These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 23112592)
1. Synthesis of bioactive microcapsules using a microfluidic device. Kim BI; Jeong SW; Lee KG; Park TJ; Park JY; Song JJ; Lee SJ; Lee CS Sensors (Basel); 2012; 12(8):10136-47. PubMed ID: 23112592 [TBL] [Abstract][Full Text] [Related]
2. Micropatterns of spores displaying heterologous proteins. Park TJ; Lee KB; Lee SJ; Park JP; Lee ZW; Choi SK; Jung HC; Pan JG; Lee SY; Choi IS J Am Chem Soc; 2004 Sep; 126(34):10512-3. PubMed ID: 15327288 [TBL] [Abstract][Full Text] [Related]
3. Novel one-pot route to monodisperse thermosensitive hollow microcapsules in a microfluidic system. Choi CH; Jung JH; Kim DW; Chung YM; Lee CS Lab Chip; 2008 Sep; 8(9):1544-51. PubMed ID: 18818811 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and utilization of E. coli-encapsulated PEG-based microdroplet using a microfluidic chip for biological application. Lee KG; Park TJ; Soo SY; Wang KW; Kim BI; Park JH; Lee CS; Kim DH; Lee SJ Biotechnol Bioeng; 2010 Nov; 107(4):747-51. PubMed ID: 20632371 [TBL] [Abstract][Full Text] [Related]
5. Bio-insecticide Bacillus thuringiensis spores encapsulated with amaranth derivatized starches: studies on the propagation "in vitro". Rodríguez AP; Martínez MG; Barrera-Cortés J; Ibarra JE; Bustos FM Bioprocess Biosyst Eng; 2015 Feb; 38(2):329-39. PubMed ID: 25168123 [TBL] [Abstract][Full Text] [Related]
6. Small microcapsules of crystal proteins and spores of Bacillus thuringiensis by an emulsification/internal gelation method. García-Gutiérrez K; Poggi-Varaldo HM; Esparza-García F; Ibarra-Rendón J; Barrera-Cortés J Bioprocess Biosyst Eng; 2011 Aug; 34(6):701-8. PubMed ID: 21344251 [TBL] [Abstract][Full Text] [Related]
7. A microfluidic device for real-time monitoring of Bacillus subtilis bacterial spores during germination based on non-specific physicochemical interactions on the nanoscale level. Zabrocka L; Langer K; Michalski A; Kocik J; Langer JJ Lab Chip; 2015 Jan; 15(1):274-82. PubMed ID: 25363735 [TBL] [Abstract][Full Text] [Related]
8. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device. Liu K; Ding HJ; Liu J; Chen Y; Zhao XZ Langmuir; 2006 Oct; 22(22):9453-7. PubMed ID: 17042568 [TBL] [Abstract][Full Text] [Related]
9. Strategies for capturing Bacillus thuringiensis spores on surfaces of (001) GaAs-based biosensors. Moteshareie H; Hassen WM; Vermette J; Dubowski JJ; Tayabali AF Talanta; 2022 Jan; 236():122813. PubMed ID: 34635209 [TBL] [Abstract][Full Text] [Related]
10. Label-Free On-Chip Selective Extraction of Cell-Aggregate-Laden Microcapsules from Oil into Aqueous Solution with Optical Sensor and Dielectrophoresis. Sun M; Durkin P; Li J; Toth TL; He X ACS Sens; 2018 Feb; 3(2):410-417. PubMed ID: 29299919 [TBL] [Abstract][Full Text] [Related]
11. Monodisperse alginate microcapsules with oil core generated from a microfluidic device. Ren PW; Ju XJ; Xie R; Chu LY J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224 [TBL] [Abstract][Full Text] [Related]
12. Continuous separation of fungal spores in a microfluidic flow focusing device. Park BS; Kye HG; Kim TH; Lee JM; Ahrberg CD; Cho EM; Yang SI; Chung BG Analyst; 2019 Aug; 144(16):4962-4971. PubMed ID: 31322144 [TBL] [Abstract][Full Text] [Related]
13. Integration of spore-based genetically engineered whole-cell sensing systems into portable centrifugal microfluidic platforms. Date A; Pasini P; Daunert S Anal Bioanal Chem; 2010 Sep; 398(1):349-56. PubMed ID: 20582692 [TBL] [Abstract][Full Text] [Related]
14. Microcompartmentalized cell-free protein synthesis in semipermeable microcapsules composed of polyethylenimine-coated alginate. Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S J Biosci Bioeng; 2014 Aug; 118(2):199-204. PubMed ID: 24583122 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic Fabrication and Thermal Properties of Microencapsulated N-Hexadecane with a Hybrid Polymer Shell for Thermal Energy Storage. Yang L; Dai L; Ye L; Yang R; Lu Y Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629733 [TBL] [Abstract][Full Text] [Related]
16. Monodisperse semi-permeable microcapsules for continuous observation of cells. Morimoto Y; Tan WH; Tsuda Y; Takeuchi S Lab Chip; 2009 Aug; 9(15):2217-23. PubMed ID: 19606299 [TBL] [Abstract][Full Text] [Related]
17. Electrical detection of germination of viable model Bacillus anthracis spores in microfluidic biochips. Liu YS; Walter TM; Chang WJ; Lim KS; Yang L; Lee SW; Aronson A; Bashir R Lab Chip; 2007 May; 7(5):603-10. PubMed ID: 17476379 [TBL] [Abstract][Full Text] [Related]
18. A three-dimensional microfluidic approach to scaling up microencapsulation of cells. Tendulkar S; Mirmalek-Sani SH; Childers C; Saul J; Opara EC; Ramasubramanian MK Biomed Microdevices; 2012 Jun; 14(3):461-9. PubMed ID: 22245953 [TBL] [Abstract][Full Text] [Related]
19. A Hsieh HY; Lin CH; Hsu SY; Stewart GC Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32680864 [TBL] [Abstract][Full Text] [Related]
20. An improved system for the surface immobilisation of proteins on Bacillus thuringiensis vegetative cells and spores through a new spore cortex-lytic enzyme anchor. Shao X; Ni H; Lu T; Jiang M; Li H; Huang X; Li L N Biotechnol; 2012 Feb; 29(3):302-10. PubMed ID: 21968393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]