These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23112689)

  • 1. Slope estimation during normal walking using a shank-mounted inertial sensor.
    López AM; Álvarez D; González RC; Álvarez JC
    Sensors (Basel); 2012; 12(9):11910-21. PubMed ID: 23112689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Walking speed estimation using a shank-mounted inertial measurement unit.
    Li Q; Young M; Naing V; Donelan JM
    J Biomech; 2010 May; 43(8):1640-3. PubMed ID: 20185136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of stride length in level walking using an inertial measurement unit attached to the foot: a validation of the zero velocity assumption during stance.
    Peruzzi A; Della Croce U; Cereatti A
    J Biomech; 2011 Jul; 44(10):1991-4. PubMed ID: 21601860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial sensors in estimating walking speed and inclination: an evaluation of sensor error models.
    Yang S; Laudanski A; Li Q
    Med Biol Eng Comput; 2012 Apr; 50(4):383-93. PubMed ID: 22418894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validity and reliability of a portable gait analysis system for measuring spatiotemporal gait characteristics: comparison to an instrumented treadmill.
    Donath L; Faude O; Lichtenstein E; Nüesch C; Mündermann A
    J Neuroeng Rehabil; 2016 Jan; 13():6. PubMed ID: 26790409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of Gait Parameters in Huntington's Disease Using Wearable Sensors in the Clinic and Free-living Conditions.
    Lozano-Garcia M; Doheny EP; Mann E; Morgan-Jones P; Drew C; Busse-Morris M; Lowery MM
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2239-2249. PubMed ID: 38819972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ambulatory running speed estimation using an inertial sensor.
    Yang S; Mohr C; Li Q
    Gait Posture; 2011 Oct; 34(4):462-6. PubMed ID: 21807521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multisensor approach to walking distance estimation with foot inertial sensing.
    Alvarez JC; González RC; Alvarez D; López AM; Rodríguez-Uría J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5720-3. PubMed ID: 18003311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of foot trajectory during human walking by a wearable inertial measurement unit mounted to the foot.
    Kitagawa N; Ogihara N
    Gait Posture; 2016 Mar; 45():110-4. PubMed ID: 26979891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of walking features from foot inertial sensing.
    Sabatini AM; Martelloni C; Scapellato S; Cavallo F
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):486-94. PubMed ID: 15759579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Height compensation using ground inclination estimation in inertial sensor-based pedestrian navigation.
    Park SK; Suh YS
    Sensors (Basel); 2011; 11(8):8045-59. PubMed ID: 22164061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IMU-based ambulatory walking speed estimation in constrained treadmill and overground walking.
    Yang S; Li Q
    Comput Methods Biomech Biomed Engin; 2012; 15(3):313-22. PubMed ID: 21294007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-contained pedestrian tracking during normal walking using an inertial/magnetic sensor module.
    Meng X; Zhang ZQ; Wu JK; Wong WC; Yu H
    IEEE Trans Biomed Eng; 2014 Mar; 61(3):892-9. PubMed ID: 24557690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study on band-pass filtering for calculating foot displacements from accelerometer and gyroscope sensors.
    Charry E; Lai DT; Begg RK; Palaniswami M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4824, 4826-7. PubMed ID: 19963857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ambulatory monitoring of human posture and walking speed using wearable accelerometer sensors.
    Yeoh WS; Pek I; Yong YH; Chen X; Waluyo AB
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5184-7. PubMed ID: 19163885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A non-ZUPT gait reconstruction method for ankle sensors.
    Xiaoxu Wu ; Yan Wang ; Pottie G
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5884-7. PubMed ID: 25571335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A practical gait analysis system using gyroscopes.
    Tong K; Granat MH
    Med Eng Phys; 1999 Mar; 21(2):87-94. PubMed ID: 10426508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy estimation of treadmill walking using on-body accelerometers and gyroscopes.
    Vathsangam H; Emken B; Schroeder E; Spruijt-Metz D; Sukhatme GS
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6497-501. PubMed ID: 21096952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A preliminary test of measurement of joint angles and stride length with wireless inertial sensors for wearable gait evaluation system.
    Watanabe T; Saito H; Koike E; Nitta K
    Comput Intell Neurosci; 2011; 2011():975193. PubMed ID: 21941531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Support vector machine for classification of walking conditions of persons after stroke with dropped foot.
    Lau HY; Tong KY; Zhu H
    Hum Mov Sci; 2009 Aug; 28(4):504-14. PubMed ID: 19428134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.