BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 23112690)

  • 1. In vivo histamine optical nanosensors.
    Cash KJ; Clark HA
    Sensors (Basel); 2012; 12(9):11922-32. PubMed ID: 23112690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorescent nanosensors for in vivo tracking of histamine levels.
    Cash KJ; Clark HA
    Anal Chem; 2013 Jul; 85(13):6312-8. PubMed ID: 23767828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gel encapsulation of glucose nanosensors for prolonged in vivo lifetime.
    Balaconis MK; Clark HA
    J Diabetes Sci Technol; 2013 Jan; 7(1):53-61. PubMed ID: 23439160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persistent Luminescence Nanosensors: A Generalized Optode-Based Platform for Autofluorescence-Free Sensing in Biological Systems.
    Sodia TZ; Tetu HL; Saccomano SC; Letch EG; Branning JM; Mendonsa AA; Vyas S; Cash KJ
    ACS Sens; 2024 Jun; 9(6):3307-3315. PubMed ID: 38826054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemometric Approaches for Developing Infrared Nanosensors To Image Anthracyclines.
    Del Bonis-O'Donnell JT; Pinals RL; Jeong S; Thakrar A; Wolfinger RD; Landry MP
    Biochemistry; 2019 Jan; 58(1):54-64. PubMed ID: 30480442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionophore-based ion-selective optical nanosensors operating in exhaustive sensing mode.
    Xie X; Zhai J; Crespo GA; Bakker E
    Anal Chem; 2014 Sep; 86(17):8770-5. PubMed ID: 25117492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradable optode-based nanosensors for in vivo monitoring.
    Balaconis MK; Clark HA
    Anal Chem; 2012 Jul; 84(13):5787-93. PubMed ID: 22725692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionophore-based optical nanosensors incorporating hydrophobic carbon dots and a pH-sensitive quencher dye for sodium detection.
    Galyean AA; Behr MR; Cash KJ
    Analyst; 2018 Jan; 143(2):458-465. PubMed ID: 29226289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hydrogel based nanosensor with an unprecedented broad sensitivity range for pH measurements in cellular compartments.
    Zhang M; Søndergaard RV; Kumar EK; Henriksen JR; Cui D; Hammershøj P; Clausen MH; Andresen TL
    Analyst; 2015 Nov; 140(21):7246-53. PubMed ID: 26393332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Algorithmically Guided Optical Nanosensor Selector (AGONS): Guiding Data Acquisition, Processing, and Discrimination for Biological Sampling.
    Smith CW; Hizir MS; Nandu N; Yigit MV
    Anal Chem; 2022 Jan; 94(2):1195-1202. PubMed ID: 34964601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LipiSensors: Exploiting Lipid Nanoemulsions to Fabricate Ionophore-Based Nanosensors.
    Dailey AL; Greer MD; Sodia TZ; Jewell MP; Kalin TA; Cash KJ
    Biosensors (Basel); 2020 Sep; 10(9):. PubMed ID: 32927619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The development of optical nanosensors for biological measurements.
    Cullum BM; Vo-Dinh T
    Trends Biotechnol; 2000 Sep; 18(9):388-93. PubMed ID: 10942963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polydiacetylene/triblock copolymer nanosensor for the detection of native and free bovine serum albumin.
    Rezende JP; Ferreira GM; Ferreira GM; da Silva LH; do Carmo Hepanhol da Silva M; Pinto MS; Pires AC
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):535-543. PubMed ID: 27770925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-fluorophore ratiometric pH nanosensor with tuneable pKa and extended dynamic range.
    Chauhan VM; Burnett GR; Aylott JW
    Analyst; 2011 May; 136(9):1799-801. PubMed ID: 21416087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amperometric Biosensor Based on Diamine Oxidase/Platinum Nanoparticles/Graphene/Chitosan Modified Screen-Printed Carbon Electrode for Histamine Detection.
    Apetrei IM; Apetrei C
    Sensors (Basel); 2016 Mar; 16(4):422. PubMed ID: 27023541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FRET-based nanosensors for monitoring and quantification of alcohols in living cells.
    Soleja N; Manzoor O; Nandal P; Mohsin M
    Org Biomol Chem; 2019 Feb; 17(9):2413-2422. PubMed ID: 30735222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organosilica Nanosensors for Monitoring Spatiotemporal Changes in Oxygen Levels in Bacterial Cultures.
    Huynh GT; Tunny SS; Frith JE; Meagher L; Corrie SR
    ACS Sens; 2024 May; 9(5):2383-2394. PubMed ID: 38687178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent nanoparticles for the measurement of ion concentration in biological systems.
    Dubach JM; Balaconis MK; Clark HA
    J Vis Exp; 2011 Jul; (53):. PubMed ID: 21750495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time monitoring of bacterial biofilms metabolic activity by a redox-reactive nanosensors array.
    Yeor-Davidi E; Zverzhinetsky M; Krivitsky V; Patolsky F
    J Nanobiotechnology; 2020 May; 18(1):81. PubMed ID: 32448291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer-free optode nanosensors for dynamic, reversible, and ratiometric sodium imaging in the physiological range.
    Ruckh TT; Mehta AA; Dubach JM; Clark HA
    Sci Rep; 2013 Nov; 3():3366. PubMed ID: 24284431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.