These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2311270)

  • 1. A dicentric variant of chromosome 6: characterization by use of in situ hybridisation with the biotinylated probe p308.
    Callen DF; Eyre HJ; Ringenbergs ML
    Clin Genet; 1990 Feb; 37(2):81-3. PubMed ID: 2311270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular cytogenetic evidence for amplification of chromosome-specific alphoid sequences at enlarged C-bands on chromosome 6.
    Jabs EW; Carpenter N
    Am J Hum Genet; 1988 Jul; 43(1):69-74. PubMed ID: 3163891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of fluorescence in situ hybridization techniques in clinical genetics: use of two alphoid repeat probes detecting the centromeres of chromosomes 13 and 21 or chromosomes 14 and 22, respectively.
    Kølvraa S; Koch J; Gregersen N; Jensen PK; Jørgensen AL; Petersen KB; Rasmussen K; Bolund L
    Clin Genet; 1991 Apr; 39(4):278-86. PubMed ID: 1829987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow cytometric quantification of human chromosome specific repetitive DNA sequences by single and bicolor fluorescent in situ hybridization to lymphocyte interphase nuclei.
    van Dekken H; Arkesteijn GJ; Visser JW; Bauman JG
    Cytometry; 1990; 11(1):153-64. PubMed ID: 2307056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A human chromosome 9-specific alphoid DNA repeat spatially resolvable from satellite 3 DNA by fluorescent in situ hybridization.
    Rocchi M; Archidiacono N; Ward DC; Baldini A
    Genomics; 1991 Mar; 9(3):517-23. PubMed ID: 1840567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the origin of centromeres in whole-arm translocations using fluorescent in situ hybridization with alpha-satellite DNA probes.
    Tharapel AT; Qumsiyeh MB; Martens PR; Tharapel SA; Dalton JD; Ward JC; Wilroy RS
    Am J Med Genet; 1991 Jul; 40(1):117-20. PubMed ID: 1887840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosome 18 variant with increased centromeric tandemly repeated DNA in a family.
    Quack B; Noël B; Moine A
    Ann Genet; 1987; 30(2):85-90. PubMed ID: 3499847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromosome-specific alpha satellite DNA from the centromere of human chromosome 16.
    Greig GM; England SB; Bedford HM; Willard HF
    Am J Hum Genet; 1989 Dec; 45(6):862-72. PubMed ID: 2573999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absence of satellite III DNA in the centromere and the proximal long-arm region of human chromosome 14: analysis of a 14p- variant.
    Earle E; Voullaire LE; Hills L; Slater H; Choo KH
    Cytogenet Cell Genet; 1992; 61(1):78-80. PubMed ID: 1505236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of extrachromosomal structures containing human centromeric alphoid satellite DNA sequences in mouse cells.
    Taylor SS; Larin Z; Tyler-Smith C
    Chromosoma; 1996 Aug; 105(2):70-81. PubMed ID: 8753696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterisation of a small marker chromosome using non-isotopic in situ hybridisation with X and Y specific probes.
    Crolla JA; Smith M; Docherty Z
    J Med Genet; 1989 Mar; 26(3):192-4. PubMed ID: 2709396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cytogenetics of alpha satellite DNA from chromosome 12: fluorescence in situ hybridization and description of DNA and array length polymorphisms.
    Greig GM; Parikh S; George J; Powers VE; Willard HF
    Cytogenet Cell Genet; 1991; 56(3-4):144-8. PubMed ID: 1675980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplification of satellite III DNA in an unusually large chromosome 14p+ variant.
    Earle E; Dale S; Choo KH
    Hum Genet; 1989 May; 82(2):187-90. PubMed ID: 2722196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Labeling of the centromeric region on human chromosome 8 by in situ hybridization.
    Weier HU; Kleine HD; Gray JW
    Hum Genet; 1991 Aug; 87(4):489-94. PubMed ID: 1879835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonradioactive in situ hybridisation of the translocation t(1;7) in myeloid malignancies.
    Kibbelaar RE; Mulder JW; van Kamp H; Dreef EJ; Wessels HW; Beverstock GC; Haak HL; Raap AK; Kluin PM
    Genes Chromosomes Cancer; 1992 Mar; 4(2):128-34. PubMed ID: 1373312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new application of in situ hybridization: detection of numerical and structural chromosome aberrations with a combination centromeric-telomeric DNA probe.
    van Dekken H; Bauman JG
    Cytogenet Cell Genet; 1988; 48(3):188-9. PubMed ID: 3234043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Clones sequences of satellite DNA III specific for the centromere heterochromatin of human chromosome 9].
    Iurov IuB; Aleksandrov IA; Mitkevich SP; Krumin' AR
    Mol Gen Mikrobiol Virusol; 1986 Aug; (8):9-11. PubMed ID: 3785259
    [No Abstract]   [Full Text] [Related]  

  • 18. Chromosome-specific alpha satellite DNA: isolation and mapping of a polymorphic alphoid repeat from human chromosome 10.
    Devilee P; Kievits T; Waye JS; Pearson PL; Willard HF
    Genomics; 1988 Jul; 3(1):1-7. PubMed ID: 3220475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterisation of a boundary between satellite III and alphoid sequences on human chromosome 10.
    Jackson MS; Mole SE; Ponder BA
    Nucleic Acids Res; 1992 Sep; 20(18):4781-7. PubMed ID: 1408791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human chromosome-specific repetitive DNA probes: targeting in situ hybridization to chromosome 17 with a 42-base-pair alphoid DNA oligomer.
    Meyne J; Moyzis RK
    Genomics; 1989 May; 4(4):472-8. PubMed ID: 2744759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.