These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 23113346)

  • 1. [The impact of Ty3-gypsy group retrotransposon Lila on D-genome specificity of wheat Triticum aestivum L].
    Shcherban' AB; Adonina IG; Salina EA
    Mol Biol (Mosk); 2012; 46(4):584-93. PubMed ID: 23113346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of Ty3-gypsy group LTR retrotransposons Fatima on B-genome specificity of polyploid wheats.
    Salina EA; Sergeeva EM; Adonina IG; Shcherban AB; Belcram H; Huneau C; Chalhoub B
    BMC Plant Biol; 2011 Jun; 11():99. PubMed ID: 21635794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide characterization of long terminal repeat -retrotransposons in apple reveals the differences in heterogeneity and copy number between Ty1-copia and Ty3-gypsy retrotransposons.
    Sun HY; Dai HY; Zhao GL; Ma Y; Ou CQ; Li H; Li LG; Zhang ZH
    J Integr Plant Biol; 2008 Sep; 50(9):1130-9. PubMed ID: 18844781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat.
    Dvorak J; Akhunov ED; Akhunov AR; Deal KR; Luo MC
    Mol Biol Evol; 2006 Jul; 23(7):1386-96. PubMed ID: 16675504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Major repeat components covering one-third of the ginseng (Panax ginseng C.A. Meyer) genome and evidence for allotetraploidy.
    Choi HI; Waminal NE; Park HM; Kim NH; Choi BS; Park M; Choi D; Lim YP; Kwon SJ; Park BS; Kim HH; Yang TJ
    Plant J; 2014 Mar; 77(6):906-16. PubMed ID: 24456463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A direct repeat sequence associated with the centromeric retrotransposons in wheat.
    Ito H; Nasuda S; Endo TR
    Genome; 2004 Aug; 47(4):747-56. PubMed ID: 15284880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B.
    Paux E; Roger D; Badaeva E; Gay G; Bernard M; Sourdille P; Feuillet C
    Plant J; 2006 Nov; 48(3):463-74. PubMed ID: 17010109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morgane, a new LTR retrotransposon group, and its subfamilies in wheats.
    Sabot F; Sourdille P; Chantret N; Bernard M
    Genetica; 2006; 128(1-3):439-47. PubMed ID: 17028971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective isolation of retrotransposons and repetitive DNA families from the wheat genome.
    Tomita M; Asao M; Kuraki A
    J Integr Plant Biol; 2010 Jul; 52(7):679-91. PubMed ID: 20590997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequencing chromosome 5D of Aegilops tauschii and comparison with its allopolyploid descendant bread wheat (Triticum aestivum).
    Akpinar BA; Lucas SJ; Vrána J; Doležel J; Budak H
    Plant Biotechnol J; 2015 Aug; 13(6):740-52. PubMed ID: 25516153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous painting of three genomes in hexaploid wheat by BAC-FISH.
    Zhang P; Li W; Friebe B; Gill BS
    Genome; 2004 Oct; 47(5):979-87. PubMed ID: 15499412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the LTR retrotransposon repertoire of a plant clade of six diploid and one tetraploid species.
    Piednoël M; Carrete-Vega G; Renner SS
    Plant J; 2013 Aug; 75(4):699-709. PubMed ID: 23663083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis.
    Zedek F; Smerda J; Smarda P; Bureš P
    BMC Plant Biol; 2010 Nov; 10():265. PubMed ID: 21118487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements.
    Staton SE; Bakken BH; Blackman BK; Chapman MA; Kane NC; Tang S; Ungerer MC; Knapp SJ; Rieseberg LH; Burke JM
    Plant J; 2012 Oct; 72(1):142-53. PubMed ID: 22691070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison.
    Du J; Tian Z; Hans CS; Laten HM; Cannon SB; Jackson SA; Shoemaker RC; Ma J
    Plant J; 2010 Aug; 63(4):584-98. PubMed ID: 20525006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene-containing regions of wheat and the other grass genomes.
    Sandhu D; Gill KS
    Plant Physiol; 2002 Mar; 128(3):803-11. PubMed ID: 11891237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of the evolution of orthologous and paralogous portions of a complex locus region in two genomes of allopolyploid wheat.
    Kong XY; Gu YQ; You FM; Dubcovsky J; Anderson OD
    Plant Mol Biol; 2004 Jan; 54(1):55-69. PubMed ID: 15159634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization of the Sasanda LTR copia retrotransposon family uncovers their recent amplification in Triticum aestivum (L.) genome.
    Ragupathy R; Banks T; Cloutier S
    Mol Genet Genomics; 2010 Mar; 283(3):255-71. PubMed ID: 20127492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular genes derived from Gypsy/Ty3 retrotransposons in mammalian genomes.
    Volff JN
    Ann N Y Acad Sci; 2009 Oct; 1178():233-43. PubMed ID: 19845640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid development of PCR-based genome-specific repetitive DNA junction markers in wheat.
    Wanjugi H; Coleman-Derr D; Huo N; Kianian SF; Luo MC; Wu J; Anderson O; Gu YQ
    Genome; 2009 Jun; 52(6):576-87. PubMed ID: 19483776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.