BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 23113530)

  • 1. Implementation and validation of probabilistic models of the anterior longitudinal ligament and posterior longitudinal ligament of the cervical spine.
    Francis WL; Eliason TD; Thacker BH; Paskoff GR; Shender BS; Nicolella DP
    Comput Methods Biomech Biomed Engin; 2014; 17(8):905-16. PubMed ID: 23113530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Biomechanical properties of the anterior and posterior longitudinal ligament in the cervical spine].
    Akaishi F
    Nihon Ika Daigaku Zasshi; 1995 Aug; 62(4):360-8. PubMed ID: 7559924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics.
    Brolin K; Halldin P
    Spine (Phila Pa 1976); 2004 Feb; 29(4):376-85. PubMed ID: 15094533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometric and mechanical properties of human cervical spine ligaments.
    Yoganandan N; Kumaresan S; Pintar FA
    J Biomech Eng; 2000 Dec; 122(6):623-9. PubMed ID: 11192384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Failure properties of cervical spinal ligaments under fast strain rate deformations.
    Bass CR; Lucas SR; Salzar RS; Oyen ML; Planchak C; Shender BS; Paskoff G
    Spine (Phila Pa 1976); 2007 Jan; 32(1):E7-13. PubMed ID: 17202883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating ligament laxity in a finite element model for the upper cervical spine.
    Lasswell TL; Cronin DS; Medley JB; Rasoulinejad P
    Spine J; 2017 Nov; 17(11):1755-1764. PubMed ID: 28673824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased stress and strain on the spinal cord due to ossification of the posterior longitudinal ligament in the cervical spine under flexion after laminectomy.
    Khuyagbaatar B; Kim K; Park WM; Lee S; Kim YH
    Proc Inst Mech Eng H; 2017 Sep; 231(9):898-906. PubMed ID: 28660796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The temperature-dependent viscoelasticity of porcine lumbar spine ligaments.
    Bass CR; Planchak CJ; Salzar RS; Lucas SR; Rafaels KA; Shender BS; Paskoff G
    Spine (Phila Pa 1976); 2007 Jul; 32(16):E436-42. PubMed ID: 17632382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cervical disc replacement-porous coated motion prosthesis: a comparative biomechanical analysis showing the key role of the posterior longitudinal ligament.
    McAfee PC; Cunningham B; Dmitriev A; Hu N; Woo Kim S; Cappuccino A; Pimenta L
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S176-85. PubMed ID: 14560189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic mechanical properties of intact human cervical spine ligaments.
    Ivancic PC; Coe MP; Ndu AB; Tominaga Y; Carlson EJ; Rubin W; Dipl-Ing FH; Panjabi MM
    Spine J; 2007; 7(6):659-65. PubMed ID: 17998125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transversely isotropic material characterization of the human anterior longitudinal ligament.
    Hortin M; Graham S; Boatwright K; Hyoung P; Bowden A
    J Mech Behav Biomed Mater; 2015 May; 45():75-82. PubMed ID: 25688029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loading rate effect on mechanical properties of cervical spine ligaments.
    Trajkovski A; Omerovic S; Krasna S; Prebil I
    Acta Bioeng Biomech; 2014; 16(3):13-20. PubMed ID: 25307779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscoelastic properties of the cervical spinal ligaments under fast strain-rate deformations.
    Lucas SR; Bass CR; Salzar RS; Oyen ML; Planchak C; Ziemba A; Shender BS; Paskoff G
    Acta Biomater; 2008 Jan; 4(1):117-25. PubMed ID: 17923449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of an asymmetric finite element model of the C2-T1 cervical spine for evaluating the role of soft tissues in stability.
    Erbulut DU; Zafarparandeh I; Lazoglu I; Ozer AF
    Med Eng Phys; 2014 Jul; 36(7):915-21. PubMed ID: 24641811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative comparison of ligament formulation and pre-strain in finite element analysis of the human lumbar spine.
    Hortin MS; Bowden AE
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(14):1505-18. PubMed ID: 27007776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excision of the Posterior Longitudinal Ligament During Anterior Cervical Corpectomy: A Biomechanical Study.
    Daubs MD; Patel AA; Lawrence BD; Brodke DS
    Clin Spine Surg; 2016 Jul; 29(6):242-7. PubMed ID: 23059704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of posterior decompression extent on biomechanical parameters of the spinal cord in cervical ossification of the posterior longitudinal ligament.
    Khuyagbaatar B; Kim K; Park WM; Kim YH
    Proc Inst Mech Eng H; 2016 Jun; 230(6):545-52. PubMed ID: 26951839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscoelastic and failure properties of spine ligament collagen fascicles.
    Lucas SR; Bass CR; Crandall JR; Kent RW; Shen FH; Salzar RS
    Biomech Model Mechanobiol; 2009 Dec; 8(6):487-98. PubMed ID: 19308471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal ligament loading during axial distraction: a biomechanical model.
    Roberts CS; Voor MJ; Rose SM; Glassman SD
    Am J Orthop (Belle Mead NJ); 1998 Jun; 27(6):434-40. PubMed ID: 9652886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of impact loading rate effects on the ligamentous cervical spinal load-partitioning using finite element model of functional spinal unit C2-C3.
    Mustafy T; El-Rich M; Mesfar W; Moglo K
    J Biomech; 2014 Sep; 47(12):2891-903. PubMed ID: 25129167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.