These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 23113585)

  • 1. Design of a three-dimensional multitarget activity landscape.
    de la Vega de León A; Bajorath J
    J Chem Inf Model; 2012 Nov; 52(11):2876-83. PubMed ID: 23113585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of multitarget activity landscapes that capture hierarchical activity cliff distributions.
    Dimova D; Wawer M; Wassermann AM; Bajorath J
    J Chem Inf Model; 2011 Feb; 51(2):258-66. PubMed ID: 21275393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of multitarget activity ridges in high-dimensional bioactivity spaces.
    Gupta-Ostermann D; Bajorath J
    J Chem Inf Model; 2012 Oct; 52(10):2579-86. PubMed ID: 23004919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactivity landscape modeling: chemoinformatic characterization of structure-activity relationships of compounds tested across multiple targets.
    Waddell J; Medina-Franco JL
    Bioorg Med Chem; 2012 Sep; 20(18):5443-52. PubMed ID: 22178187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Navigating high-dimensional activity landscapes: design and application of the ligand-target differentiation map.
    Iyer P; Dimova D; Vogt M; Bajorath J
    J Chem Inf Model; 2012 Aug; 52(8):1962-9. PubMed ID: 22794307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Representation of multi-target activity landscapes through target pair-based compound encoding in self-organizing maps.
    Iyer P; Bajorath J
    Chem Biol Drug Des; 2011 Nov; 78(5):778-86. PubMed ID: 21895984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rationalizing three-dimensional activity landscapes and the influence of molecular representations on landscape topology and the formation of activity cliffs.
    Peltason L; Iyer P; Bajorath J
    J Chem Inf Model; 2010 Jun; 50(6):1021-33. PubMed ID: 20443603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based chemogenomics: analysis of protein family landscapes.
    Pirard B
    Methods Mol Biol; 2009; 575():281-96. PubMed ID: 19727620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conditional probabilities of activity landscape features for individual compounds.
    Vogt M; Iyer P; Maggiora GM; Bajorath J
    J Chem Inf Model; 2013 Jul; 53(7):1602-12. PubMed ID: 23789585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consensus models of activity landscapes with multiple chemical, conformer, and property representations.
    Yongye AB; Byler K; Santos R; Martínez-Mayorga K; Maggiora GM; Medina-Franco JL
    J Chem Inf Model; 2011 Jun; 51(6):1259-70. PubMed ID: 21609014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multitarget structure-activity relationships characterized by activity-difference maps and consensus similarity measure.
    Medina-Franco JL; Yongye AB; Pérez-Villanueva J; Houghten RA; Martínez-Mayorga K
    J Chem Inf Model; 2011 Sep; 51(9):2427-39. PubMed ID: 21842860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SAR monitoring of evolving compound data sets using activity landscapes.
    Iyer P; Hu Y; Bajorath J
    J Chem Inf Model; 2011 Mar; 51(3):532-40. PubMed ID: 21322535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity.
    Martin E; Mukherjee P; Sullivan D; Jansen J
    J Chem Inf Model; 2011 Aug; 51(8):1942-56. PubMed ID: 21667971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemotography for multi-target SAR analysis in the context of biological pathways.
    Lounkine E; Kutchukian P; Petrone P; Davies JW; Glick M
    Bioorg Med Chem; 2012 Sep; 20(18):5416-27. PubMed ID: 22405595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From structure-activity to structure-selectivity relationships: quantitative assessment, selectivity cliffs, and key compounds.
    Peltason L; Hu Y; Bajorath J
    ChemMedChem; 2009 Nov; 4(11):1864-73. PubMed ID: 19750525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale assessment of activity landscape feature probabilities of bioactive compounds.
    Kayastha S; Dimova D; Iyer P; Vogt M; Bajorath J
    J Chem Inf Model; 2014 Feb; 54(2):442-50. PubMed ID: 24410456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing multitarget activity landscapes using protein-ligand interaction fingerprints: interaction cliffs.
    Méndez-Lucio O; Kooistra AJ; de Graaf C; Bender A; Medina-Franco JL
    J Chem Inf Model; 2015 Feb; 55(2):251-62. PubMed ID: 25615841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of activity landscapes for drug discovery.
    Bajorath J
    Expert Opin Drug Discov; 2012 Jun; 7(6):463-73. PubMed ID: 22475223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using the TOPS-MODE approach to fit multi-target QSAR models for tyrosine kinases inhibitors.
    Marzaro G; Chilin A; Guiotto A; Uriarte E; Brun P; Castagliuolo I; Tonus F; González-Díaz H
    Eur J Med Chem; 2011 Jun; 46(6):2185-92. PubMed ID: 21447431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity landscape modeling of PPAR ligands with dual-activity difference maps.
    Méndez-Lucio O; Pérez-Villanueva J; Castillo R; Medina-Franco JL
    Bioorg Med Chem; 2012 Jun; 20(11):3523-32. PubMed ID: 22564380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.