BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23113651)

  • 1. A new cortical thickness mapping method with application to an in vivo finite element model.
    Kim YH; Kim JE; Eberhardt AW
    Comput Methods Biomech Biomed Engin; 2014; 17(9):997-1001. PubMed ID: 23113651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High resolution bone material property assignment yields robust subject specific finite element models of complex thin bone structures.
    Pakdel A; Fialkov J; Whyne CM
    J Biomech; 2016 Jun; 49(9):1454-1460. PubMed ID: 27033728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element study of human pelvis model in side impact for Chinese adult occupants.
    Ma Z; Lan F; Chen J; Liu W
    Traffic Inj Prev; 2015; 16(4):409-17. PubMed ID: 25133596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Cortical Thickness Mapping Method for the Coxal Bone Using Morphing.
    Giudice JS; Poulard D; Nie B; Wu T; Panzer MB
    Front Bioeng Biotechnol; 2018; 6():149. PubMed ID: 30406094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized method for computation of true thickness and x-ray intensity information in highly blurred sub-millimeter bone features in clinical CT images.
    Pakdel A; Robert N; Fialkov J; Maloul A; Whyne C
    Phys Med Biol; 2012 Dec; 57(23):8099-116. PubMed ID: 23159920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies.
    Viceconti M; Davinelli M; Taddei F; Cappello A
    J Biomech; 2004 Oct; 37(10):1597-605. PubMed ID: 15336935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of voxel size-based inaccuracies on the mechanical behavior of thin bone structures.
    Maloul A; Fialkov J; Whyne C
    Ann Biomed Eng; 2011 Mar; 39(3):1092-100. PubMed ID: 21120697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image.
    Väänänen SP; Grassi L; Flivik G; Jurvelin JS; Isaksson H
    Med Image Anal; 2015 Aug; 24(1):125-134. PubMed ID: 26148575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supervised learning for bone shape and cortical thickness estimation from CT images for finite element analysis.
    Chandran V; Maquer G; Gerig T; Zysset P; Reyes M
    Med Image Anal; 2019 Feb; 52():42-55. PubMed ID: 30471462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of sparse CT datasets for auto-generating accurate FE models of the femur and pelvis.
    Shim VB; Pitto RP; Streicher RM; Hunter PJ; Anderson IA
    J Biomech; 2007; 40(1):26-35. PubMed ID: 16427645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiautomated finite element mesh generation methods for a long bone.
    Pfeiler TW; Lalush DS; Loboa EG
    Comput Methods Programs Biomed; 2007 Mar; 85(3):196-202. PubMed ID: 17207888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Establishment and application of subject-specific three-dimensional finite element mesh model for osteonecrosis of femoral head].
    Pang Z; Wei Q; Zhou G; Chen P; He W; Bai B; Li Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Apr; 29(2):251-5. PubMed ID: 22616168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study on different methods of automatic mesh generation of human femurs.
    Viceconti M; Bellingeri L; Cristofolini L; Toni A
    Med Eng Phys; 1998 Jan; 20(1):1-10. PubMed ID: 9664280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of CT imaging on the accuracy of the finite element modelling in bone.
    Benca E; Amini M; Pahr DH
    Eur Radiol Exp; 2020 Sep; 4(1):51. PubMed ID: 32869123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A universal algorithm for an improved finite element mesh generation Mesh quality assessment in comparison to former automated mesh-generators and an analytic model.
    Kaminsky J; Rodt T; Gharabaghi A; Forster J; Brand G; Samii M
    Med Eng Phys; 2005 Jun; 27(5):383-94. PubMed ID: 15863347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limitations of clinical CT in assessing cortical thickness and density.
    Newman DL; Dougherty G; al Obaid A; al Hajrasy H
    Phys Med Biol; 1998 Mar; 43(3):619-26. PubMed ID: 9533140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensional, anatomically detailed foot model: a foundation for a finite element simulation and means of quantifying foot-bone position.
    Camacho DL; Ledoux WR; Rohr ES; Sangeorzan BJ; Ching RP
    J Rehabil Res Dev; 2002; 39(3):401-10. PubMed ID: 12173760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A NURBS-based technique for subject-specific construction of knee bone geometry.
    Au AG; Palathinkal D; Liggins AB; Raso VJ; Carey J; Lambert RG; Amirfazli A
    Comput Methods Programs Biomed; 2008 Oct; 92(1):20-34. PubMed ID: 18644314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A technique for developing CAD geometry of long bones using clinical CT data.
    Davis ML; Vavalle NA; Stitzel JD; Gayzik FS
    Med Eng Phys; 2015 Nov; 37(11):1116-23. PubMed ID: 26432286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonically determined thickness of long cortical bones: Three-dimensional simulations of in vitro experiments.
    Moilanen P; Talmant M; Nicholson PH; Cheng S; Timonen J; Laugier P
    J Acoust Soc Am; 2007 Oct; 122(4):2439-45. PubMed ID: 17902878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.