These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23113651)

  • 21. Effects of ray profile modeling on resolution recovery in clinical CT.
    Hofmann C; Knaup M; Kachelrieß M
    Med Phys; 2014 Feb; 41(2):021907. PubMed ID: 24506628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Subject-specific finite element simulation of the human femur considering inhomogeneous material properties: a straightforward method and convergence study.
    Hölzer A; Schröder C; Woiczinski M; Sadoghi P; Scharpf A; Heimkes B; Jansson V
    Comput Methods Programs Biomed; 2013 Apr; 110(1):82-8. PubMed ID: 23084242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computer aided stress analysis of long bones utilizing computed tomography.
    Marom SA; Linden MJ
    J Biomech; 1990; 23(5):399-404. PubMed ID: 2373712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new method for the automatic mesh generation of bone segments from CT data.
    Viceconti M; Zannoni C; Testi D; Cappello A
    J Med Eng Technol; 1999; 23(2):77-81. PubMed ID: 10356679
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Restoration of Thickness, Density, and Volume for Highly Blurred Thin Cortical Bones in Clinical CT Images.
    Pakdel A; Hardisty M; Fialkov J; Whyne C
    Ann Biomed Eng; 2016 Nov; 44(11):3359-3371. PubMed ID: 27245852
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Precision of cortical bone reconstruction based on 3D CT scans.
    Wang J; Ye M; Liu Z; Wang C
    Comput Med Imaging Graph; 2009 Apr; 33(3):235-41. PubMed ID: 19217257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Semiautomatic extraction of cortical thickness and diaphyseal curvature from CT scans.
    Dupej J; Lacoste Jeanson A; Pelikán J; Brůžek J
    Am J Phys Anthropol; 2017 Dec; 164(4):868-876. PubMed ID: 28913906
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computed tomography landmark-based semi-automated mesh morphing and mapping techniques: generation of patient specific models of the human pelvis without segmentation.
    Salo Z; Beek M; Wright D; Whyne CM
    J Biomech; 2015 Apr; 48(6):1125-32. PubMed ID: 25680299
    [TBL] [Abstract][Full Text] [Related]  

  • 29. From high-resolution CT data to finite element models: development of an integrated modular framework.
    Pahr DH; Zysset PK
    Comput Methods Biomech Biomed Engin; 2009 Feb; 12(1):45-57. PubMed ID: 18839383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Patient-specific finite element modeling of bones.
    Poelert S; Valstar E; Weinans H; Zadpoor AA
    Proc Inst Mech Eng H; 2013 Apr; 227(4):464-78. PubMed ID: 23637222
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate technique for complete geometric calibration of cone-beam computed tomography systems.
    Cho Y; Moseley DJ; Siewerdsen JH; Jaffray DA
    Med Phys; 2005 Apr; 32(4):968-83. PubMed ID: 15895580
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Technical Note: Cortical thickness and density estimation from clinical CT using a prior thickness-density relationship.
    Humbert L; Hazrati Marangalou J; Del Río Barquero LM; van Lenthe GH; van Rietbergen B
    Med Phys; 2016 Apr; 43(4):1945. PubMed ID: 27036590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new algorithm to improve assessment of cortical bone geometry in pQCT.
    Cervinka T; Sievänen H; Lala D; Cheung AM; Giangregorio L; Hyttinen J
    Bone; 2015 Dec; 81():721-730. PubMed ID: 26428659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of geometric and threshold definitions on cortical bone metrics assessed by in vivo high-resolution peripheral quantitative computed tomography.
    Davis KA; Burghardt AJ; Link TM; Majumdar S
    Calcif Tissue Int; 2007 Nov; 81(5):364-71. PubMed ID: 17952361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A robust algorithm for thickness computation at low resolution and its application to in vivo trabecular bone CT imaging.
    Liu Y; Jin D; Li C; Janz KF; Burns TL; Torner JC; Levy SM; Saha PK
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):2057-69. PubMed ID: 24686226
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A parametric study of hard tissue injury prediction using finite elements: consideration of geometric complexity, subfailure material properties, CT-thresholding, and element characteristics.
    Arregui-Dalmases C; Del Pozo E; Duprey S; Lopez-Valdes FJ; Lau A; Subit D; Kent R
    Traffic Inj Prev; 2010 Jun; 11(3):286-93. PubMed ID: 20544573
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mapping anisotropy of the proximal femur for enhanced image based finite element analysis.
    Enns-Bray WS; Owoc JS; Nishiyama KK; Boyd SK
    J Biomech; 2014 Oct; 47(13):3272-8. PubMed ID: 25219361
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a child head analytical dynamic model considering cranial nonuniform thickness and curvature - Applying to children aged 0-1 years old.
    Li Z; Ji C; Wang L
    Comput Methods Programs Biomed; 2018 Jul; 161():181-189. PubMed ID: 29852960
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hexahedral meshing of subject-specific anatomic structures using mapped building blocks.
    Kallemeyn NA; Natarajan A; Magnotta VA; Grosland NM
    Comput Methods Biomech Biomed Engin; 2013; 16(6):602-11. PubMed ID: 22185480
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties.
    Taddei F; Martelli S; Reggiani B; Cristofolini L; Viceconti M
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2194-200. PubMed ID: 17073324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.