BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 23113765)

  • 1. Fluorogenic RNA nanoparticles for monitoring RNA folding and degradation in real time in living cells.
    Reif R; Haque F; Guo P
    Nucleic Acid Ther; 2012 Dec; 22(6):428-37. PubMed ID: 23113765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable folding of fusion RNA in vivo and in vitro driven by pRNA 3WJ motif of phi29 DNA packaging motor.
    Shu D; Khisamutdinov EF; Zhang L; Guo P
    Nucleic Acids Res; 2014 Jan; 42(2):e10. PubMed ID: 24084081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual functional RNA nanoparticles containing phi29 motor pRNA and anti-gp120 aptamer for cell-type specific delivery and HIV-1 inhibition.
    Zhou J; Shu Y; Guo P; Smith DD; Rossi JJ
    Methods; 2011 Jun; 54(2):284-94. PubMed ID: 21256218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of pRNA nanoparticles to deliver therapeutic RNAs and bioactive compounds into tumor cells.
    Shu Y; Shu D; Haque F; Guo P
    Nat Protoc; 2013 Sep; 8(9):1635-59. PubMed ID: 23928498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of multifunctional phi29 pRNA nanoparticles for specific delivery of siRNA and other therapeutics to targeted cells.
    Shu Y; Cinier M; Shu D; Guo P
    Methods; 2011 Jun; 54(2):204-14. PubMed ID: 21320601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using RNA nanoparticles with thermostable motifs and fluorogenic modules for real-time detection of RNA folding and turnover in prokaryotic and eukaryotic cells.
    Zhang H; Pi F; Shu D; Vieweger M; Guo P
    Methods Mol Biol; 2015; 1297():95-111. PubMed ID: 25895998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. siRNA-aptamer chimeras on nanoparticles: preserving targeting functionality for effective gene silencing.
    Bagalkot V; Gao X
    ACS Nano; 2011 Oct; 5(10):8131-9. PubMed ID: 21936502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of Low-Abundance Metabolites in Live Cells Using an RNA Integrator.
    You M; Litke JL; Wu R; Jaffrey SR
    Cell Chem Biol; 2019 Apr; 26(4):471-481.e3. PubMed ID: 30773480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific delivery of therapeutic RNAs to cancer cells via the dimerization mechanism of phi29 motor pRNA.
    Guo S; Tschammer N; Mohammed S; Guo P
    Hum Gene Ther; 2005 Sep; 16(9):1097-109. PubMed ID: 16149908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bottom-up assembly of RNA nanoparticles containing phi29 motor pRNA to silence the asthma STAT5b gene.
    Qiu C; Peng WK; Shi F; Zhang T
    Genet Mol Res; 2012 Sep; 11(3):3236-45. PubMed ID: 23079817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics.
    Shu D; Shu Y; Haque F; Abdelmawla S; Guo P
    Nat Nanotechnol; 2011 Sep; 6(10):658-67. PubMed ID: 21909084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment and comparison of thermal stability of phosphorothioate-DNA, DNA, RNA, 2'-F RNA, and LNA in the context of Phi29 pRNA 3WJ.
    Piao X; Wang H; Binzel DW; Guo P
    RNA; 2018 Jan; 24(1):67-76. PubMed ID: 29051199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods for construction and characterization of simple or special multifunctional RNA nanoparticles based on the 3WJ of phi29 DNA packaging motor.
    Guo S; Piao X; Li H; Guo P
    Methods; 2018 Jul; 143():121-133. PubMed ID: 29530505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of specific delivery of chimeric phi29 pRNA/siRNA nanoparticles to multiple tumor cells.
    Li L; Liu J; Diao Z; Shu D; Guo P; Shen G
    Mol Biosyst; 2009 Nov; 5(11):1361-8. PubMed ID: 19823753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physicochemically tunable polyfunctionalized RNA square architecture with fluorogenic and ribozymatic properties.
    Jasinski DL; Khisamutdinov EF; Lyubchenko YL; Guo P
    ACS Nano; 2014 Aug; 8(8):7620-9. PubMed ID: 24971772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA nanoparticles harboring annexin A2 aptamer can target ovarian cancer for tumor-specific doxorubicin delivery.
    Pi F; Zhang H; Li H; Thiviyanathan V; Gorenstein DG; Sood AK; Guo P
    Nanomedicine; 2017 Apr; 13(3):1183-1193. PubMed ID: 27890659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. iSpinach: a fluorogenic RNA aptamer optimized for in vitro applications.
    Autour A; Westhof E; Ryckelynck M
    Nucleic Acids Res; 2016 Apr; 44(6):2491-500. PubMed ID: 26932363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aptamer to ribozyme: the intrinsic catalytic potential of a small RNA.
    Brackett DM; Dieckmann T
    Chembiochem; 2006 May; 7(5):839-43. PubMed ID: 16566048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA as a boiling-resistant anionic polymer material to build robust structures with defined shape and stoichiometry.
    Khisamutdinov EF; Jasinski DL; Guo P
    ACS Nano; 2014 May; 8(5):4771-81. PubMed ID: 24694194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering a ribozyme cleavage-induced split fluorescent aptamer complementation assay.
    Ausländer S; Fuchs D; Hürlemann S; Ausländer D; Fussenegger M
    Nucleic Acids Res; 2016 Jun; 44(10):e94. PubMed ID: 26939886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.