BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 23113982)

  • 1. Expression of flavonoid 3'-hydroxylase is controlled by P1, the regulator of 3-deoxyflavonoid biosynthesis in maize.
    Sharma M; Chai C; Morohashi K; Grotewold E; Snook ME; Chopra S
    BMC Plant Biol; 2012 Nov; 12():196. PubMed ID: 23113982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the pr1 gene product completes the anthocyanin biosynthesis pathway of maize.
    Sharma M; Cortes-Cruz M; Ahern KR; McMullen M; Brutnell TP; Chopra S
    Genetics; 2011 May; 188(1):69-79. PubMed ID: 21385724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A maize QTL for silk maysin levels contains duplicated Myb-homologous genes which jointly regulate flavone biosynthesis.
    Zhang P; Wang Y; Zhang J; Maddock S; Snook M; Peterson T
    Plant Mol Biol; 2003 May; 52(1):1-15. PubMed ID: 12825685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative proteomics analysis by DIGE and iTRAQ provides insight into the regulation of phenylpropanoids in maize.
    Robbins ML; Roy A; Wang PH; Gaffoor I; Sekhon RS; de O Buanafina MM; Rohila JS; Chopra S
    J Proteomics; 2013 Nov; 93():254-75. PubMed ID: 23811284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and Characterization of Maize salmon silks Genes Involved in Insecticidal Maysin Biosynthesis.
    Casas MI; Falcone-Ferreyra ML; Jiang N; Mejía-Guerra MK; Rodríguez E; Wilson T; Engelmeier J; Casati P; Grotewold E
    Plant Cell; 2016 Jun; 28(6):1297-309. PubMed ID: 27221383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A genome-wide regulatory framework identifies maize pericarp color1 controlled genes.
    Morohashi K; Casas MI; Falcone Ferreyra ML; Falcone Ferreyra L; Mejía-Guerra MK; Pourcel L; Yilmaz A; Feller A; Carvalho B; Emiliani J; Rodriguez E; Pellegrinet S; McMullen M; Casati P; Grotewold E
    Plant Cell; 2012 Jul; 24(7):2745-64. PubMed ID: 22822204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic mechanisms underlying apimaysin and maysin synthesis and corn earworm antibiosis in maize (Zea mays L.).
    Lee EA; Byrne PF; McMullen MD; Snook ME; Wiseman BR; Widstrom NW; Coe EH
    Genetics; 1998 Aug; 149(4):1997-2006. PubMed ID: 9691053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of a maize Myb transcription factor driven by a putative silk-specific promoter significantly enhances resistance to Helicoverpa zea in transgenic maize.
    Johnson ET; Berhow MA; Dowd PF
    J Agric Food Chem; 2007 Apr; 55(8):2998-3003. PubMed ID: 17385885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phlobaphenes modify pericarp thickness in maize and accumulation of the fumonisin mycotoxins.
    Landoni M; Puglisi D; Cassani E; Borlini G; Brunoldi G; Comaschi C; Pilu R
    Sci Rep; 2020 Jan; 10(1):1417. PubMed ID: 31996735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue culture-induced novel epialleles of a Myb transcription factor encoded by pericarp color1 in maize.
    Rhee Y; Sekhon RS; Chopra S; Kaeppler S
    Genetics; 2010 Nov; 186(3):843-55. PubMed ID: 20823340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restriction fragment length polymorphism markers associated with silk maysin, antibiosis to corn earworm (Lepidoptera: Noctuidae) larvae, in a dent and sweet corn cross.
    Guo BZ; Zhang ZJ; Li RG; Widstrom NW; Snook ME; Lynch RE; Plaisted D
    J Econ Entomol; 2001 Apr; 94(2):564-71. PubMed ID: 11332855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linking anthocyanin diversity, hue, and genetics in purple corn.
    Chatham LA; Juvik JA
    G3 (Bethesda); 2021 Feb; 11(2):. PubMed ID: 33585872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The genetic basis of C-glycosyl flavone B-ring modification in maize (Zea mays L.) silks.
    Cortés-Cruz M; Snook M; McMullen MD
    Genome; 2003 Apr; 46(2):182-94. PubMed ID: 12723034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of anthocyanins and proanthocyanidins after transformation of alfalfa with maize Lc.
    Ray H; Yu M; Auser P; Blahut-Beatty L; McKersie B; Bowley S; Westcott N; Coulman B; Lloyd A; Gruber MY
    Plant Physiol; 2003 Jul; 132(3):1448-63. PubMed ID: 12857826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sorghum MYB transcription factor induces 3-deoxyanthocyanidins and enhances resistance against leaf blights in maize.
    Ibraheem F; Gaffoor I; Tan Q; Shyu CR; Chopra S
    Molecules; 2015 Jan; 20(2):2388-404. PubMed ID: 25647576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparisons of maize pericarp color1 alleles reveal paralogous gene recombination and an organ-specific enhancer region.
    Zhang F; Peterson T
    Plant Cell; 2005 Mar; 17(3):903-14. PubMed ID: 15722466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks.
    Szalma SJ; Buckler ES; Snook ME; McMullen MD
    Theor Appl Genet; 2005 May; 110(7):1324-33. PubMed ID: 15806344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Identification of Maize and Arabidopsis Type I FLAVONE SYNTHASEs Links Flavones with Hormones and Biotic Interactions.
    Falcone Ferreyra ML; Emiliani J; Rodriguez EJ; Campos-Bermudez VA; Grotewold E; Casati P
    Plant Physiol; 2015 Oct; 169(2):1090-107. PubMed ID: 26269546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elements of the maize A1 promoter required for transactivation by the anthocyanin B/C1 or phlobaphene P regulatory genes.
    Tuerck JA; Fromm ME
    Plant Cell; 1994 Nov; 6(11):1655-63. PubMed ID: 7827497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progressive loss of DNA methylation releases epigenetic gene silencing from a tandemly repeated maize Myb gene.
    Sekhon RS; Chopra S
    Genetics; 2009 Jan; 181(1):81-91. PubMed ID: 19001287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.