These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 23114213)
1. Biophysical determinants of transcranial magnetic stimulation: effects of excitability and depth of targeted area. Stokes MG; Barker AT; Dervinis M; Verbruggen F; Maizey L; Adams RC; Chambers CD J Neurophysiol; 2013 Jan; 109(2):437-44. PubMed ID: 23114213 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of cortical excitability by motor and phosphene thresholds in transcranial magnetic stimulation. Gerwig M; Kastrup O; Meyer BU; Niehaus L J Neurol Sci; 2003 Nov; 215(1-2):75-8. PubMed ID: 14568132 [TBL] [Abstract][Full Text] [Related]
3. Correlation between motor and phosphene thresholds: a transcranial magnetic stimulation study. Deblieck C; Thompson B; Iacoboni M; Wu AD Hum Brain Mapp; 2008 Jun; 29(6):662-70. PubMed ID: 17598167 [TBL] [Abstract][Full Text] [Related]
4. Simple metric for scaling motor threshold based on scalp-cortex distance: application to studies using transcranial magnetic stimulation. Stokes MG; Chambers CD; Gould IC; Henderson TR; Janko NE; Allen NB; Mattingley JB J Neurophysiol; 2005 Dec; 94(6):4520-7. PubMed ID: 16135552 [TBL] [Abstract][Full Text] [Related]
5. Distance-adjusted motor threshold for transcranial magnetic stimulation. Stokes MG; Chambers CD; Gould IC; English T; McNaught E; McDonald O; Mattingley JB Clin Neurophysiol; 2007 Jul; 118(7):1617-25. PubMed ID: 17524764 [TBL] [Abstract][Full Text] [Related]
6. Effect of individual anatomy on resting motor threshold-computed electric field as a measure of cortical excitability. Danner N; Könönen M; Säisänen L; Laitinen R; Mervaala E; Julkunen P J Neurosci Methods; 2012 Jan; 203(2):298-304. PubMed ID: 22019330 [TBL] [Abstract][Full Text] [Related]
7. No correlation between moving phosphene and motor thresholds: a transcranial magnetic stimulation study. Antal A; Nitsche MA; Kincses TZ; Lampe C; Paulus W Neuroreport; 2004 Feb; 15(2):297-302. PubMed ID: 15076756 [TBL] [Abstract][Full Text] [Related]
8. Visual and motor cortex excitability: a transcranial magnetic stimulation study. Boroojerdi B; Meister IG; Foltys H; Sparing R; Cohen LG; Töpper R Clin Neurophysiol; 2002 Sep; 113(9):1501-4. PubMed ID: 12169333 [TBL] [Abstract][Full Text] [Related]
9. Phosphene and motor transcranial magnetic stimulation thresholds are correlated: A meta-analytic investigation. Phylactou P; Pham TNM; Narskhani N; Diya N; Seminowicz DA; Schabrun SM Prog Neuropsychopharmacol Biol Psychiatry; 2024 Jul; 133():111020. PubMed ID: 38692474 [TBL] [Abstract][Full Text] [Related]
10. Probing short-latency cortical inhibition in the visual cortex with transcranial magnetic stimulation: A reliability study. Khammash D; Simmonite M; Polk TA; Taylor SF; Meehan SK Brain Stimul; 2019; 12(3):702-704. PubMed ID: 30700394 [TBL] [Abstract][Full Text] [Related]
11. Reduction of human visual cortex excitability using 1-Hz transcranial magnetic stimulation. Boroojerdi B; Prager A; Muellbacher W; Cohen LG Neurology; 2000 Apr; 54(7):1529-31. PubMed ID: 10751273 [TBL] [Abstract][Full Text] [Related]
12. Stimulating deep cortical structures with the batwing coil: how to determine the intensity for transcranial magnetic stimulation using coil-cortex distance. Cai W; George JS; Chambers CD; Stokes MG; Verbruggen F; Aron AR J Neurosci Methods; 2012 Mar; 204(2):238-41. PubMed ID: 22138632 [TBL] [Abstract][Full Text] [Related]
13. The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation. Kammer T; Beck S; Erb M; Grodd W Clin Neurophysiol; 2001 Nov; 112(11):2015-21. PubMed ID: 11682339 [TBL] [Abstract][Full Text] [Related]
14. Navigated transcranial magnetic stimulation and computed electric field strength reduce stimulator-dependent differences in the motor threshold. Danner N; Julkunen P; Könönen M; Säisänen L; Nurkkala J; Karhu J J Neurosci Methods; 2008 Sep; 174(1):116-22. PubMed ID: 18662721 [TBL] [Abstract][Full Text] [Related]
15. State-dependency effects on TMS: a look at motive phosphene behavior. Najib U; Horvath JC; Silvanto J; Pascual-Leone A J Vis Exp; 2010 Dec; (46):. PubMed ID: 21248686 [TBL] [Abstract][Full Text] [Related]
16. Modulation of phosphene perception during saccadic eye movements: a transcranial magnetic stimulation study of the human visual cortex. Boulay C; Paus T Exp Brain Res; 2005 Nov; 167(2):297-300. PubMed ID: 16175365 [TBL] [Abstract][Full Text] [Related]
17. Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds. Kanai R; Paulus W; Walsh V Clin Neurophysiol; 2010 Sep; 121(9):1551-1554. PubMed ID: 20382069 [TBL] [Abstract][Full Text] [Related]
18. Spreading photoparoxysmal EEG response is associated with an abnormal cortical excitability pattern. Siniatchkin M; Groppa S; Jerosch B; Muhle H; Kurth C; Shepherd AJ; Siebner H; Stephani U Brain; 2007 Jan; 130(Pt 1):78-87. PubMed ID: 17121743 [TBL] [Abstract][Full Text] [Related]
19. The timing and intensity of transcranial magnetic stimulation, and the scalp site stimulated, as variables influencing motor sequence performance in healthy subjects. Gregori B; Currà A; Dinapoli L; Bologna M; Accornero N; Berardelli A Exp Brain Res; 2005 Sep; 166(1):43-55. PubMed ID: 15887005 [TBL] [Abstract][Full Text] [Related]
20. Variation of stimulation intensity in transcranial magnetic stimulation with depth. Trillenberg P; Bremer S; Oung S; Erdmann C; Schweikard A; Richter L J Neurosci Methods; 2012 Nov; 211(2):185-90. PubMed ID: 23000723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]