These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23114229)

  • 1. Force-induced diffusion in microrheology.
    Harrer ChJ; Winter D; Horbach J; Fuchs M; Voigtmann T
    J Phys Condens Matter; 2012 Nov; 24(46):464105. PubMed ID: 23114229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymptotic analysis of mode-coupling theory of active nonlinear microrheology.
    Gnann MV; Voigtmann T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011406. PubMed ID: 23005416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microrheology of colloidal systems.
    Puertas AM; Voigtmann T
    J Phys Condens Matter; 2014 Jun; 26(24):243101. PubMed ID: 24848328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear active micro-rheology in a glass-forming soft-sphere mixture.
    Winter D; Horbach J
    J Chem Phys; 2013 Mar; 138(12):12A512. PubMed ID: 23556763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active microrheology of driven granular particles.
    Wang T; Grob M; Zippelius A; Sperl M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042209. PubMed ID: 24827243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active and nonlinear microrheology in dense colloidal suspensions.
    Gazuz I; Puertas AM; Voigtmann T; Fuchs M
    Phys Rev Lett; 2009 Jun; 102(24):248302. PubMed ID: 19659052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active nonlinear microrheology in a glass-forming Yukawa fluid.
    Winter D; Horbach J; Virnau P; Binder K
    Phys Rev Lett; 2012 Jan; 108(2):028303. PubMed ID: 22324717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active and passive microrheology with large tracers in hard colloids.
    Orts F; Maier M; Fuchs M; Ortega G; Garzón EM; Puertas AM
    J Chem Phys; 2023 Oct; 159(14):. PubMed ID: 37815111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active microrheology in two-dimensional magnetic networks.
    Wang H; Mohorič T; Zhang X; Dobnikar J; Horbach J
    Soft Matter; 2019 Jun; 15(22):4437-4444. PubMed ID: 31011733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-diffusion in dense granular shear flows.
    Utter B; Behringer RP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031308. PubMed ID: 15089287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a nonequilibrium Stokes-Einstein relation via active microrheology of hydrodynamically interacting colloidal dispersions.
    Chu HCW; Zia RN
    J Colloid Interface Sci; 2019 Mar; 539():388-399. PubMed ID: 30597285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active microrheology in corrugated channels.
    Puertas AM; Malgaretti P; Pagonabarraga I
    J Chem Phys; 2018 Nov; 149(17):174908. PubMed ID: 30408983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusive mixing of polymers investigated by Raman microspectroscopy and microrheology.
    Jonás A; De Luca AC; Pesce G; Rusciano G; Sasso A; Caserta S; Guido S; Marrucci G
    Langmuir; 2010 Sep; 26(17):14223-30. PubMed ID: 20681558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear microrheology: bulk stresses versus direct interactions.
    Squires TM
    Langmuir; 2008 Feb; 24(4):1147-59. PubMed ID: 18154310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropic diffusion across an external magnetic field and large-scale fluctuations in magnetized plasmas.
    Holod I; Zagorodny A; Weiland J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046401. PubMed ID: 15903788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusive motion with nonlinear friction: apparently Brownian.
    Goohpattader PS; Chaudhury MK
    J Chem Phys; 2010 Jul; 133(2):024702. PubMed ID: 20632765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Bauschinger effect in supercooled melts under shear: results from mode coupling theory and molecular dynamics simulations.
    Frahsa F; Bhattacharjee AK; Horbach J; Fuchs M; Voigtmann T
    J Chem Phys; 2013 Mar; 138(12):12A513. PubMed ID: 23556764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of steady-state diffusion: driving force ensured by dual control volumes or local equilibrium Monte Carlo.
    Ható Z; Boda D; Kristóf T
    J Chem Phys; 2012 Aug; 137(5):054109. PubMed ID: 22894334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport coefficients in dense active Brownian particle systems: mode-coupling theory and simulation results.
    Reichert J; Granz LF; Voigtmann T
    Eur Phys J E Soft Matter; 2021 Mar; 44(3):27. PubMed ID: 33704593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subdiffusive behavior of a dilute non-Brownian suspension under shear.
    Guzmán-Lastra F; Soto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042311. PubMed ID: 23679418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.