These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23114229)

  • 21. Equilibrium calculation of the friction coefficient for a massive particle moving in finite liquid volume.
    Petravic J
    J Chem Phys; 2008 Sep; 129(11):114502. PubMed ID: 19044964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Persistent motion of a Brownian particle subject to repulsive feedback with time delay.
    Kopp RA; Klapp SHL
    Phys Rev E; 2023 Feb; 107(2-1):024611. PubMed ID: 36932532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Studies of human hair by friction force microscopy with the hair-model-probe.
    Sadaie M; Nishikawa N; Ohnishi S; Tamada K; Yase K; Hara M
    Colloids Surf B Biointerfaces; 2006 Aug; 51(2):120-9. PubMed ID: 16872812
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Force-driven active dynamics of thin nanorods in unentangled polymer melts.
    Zhang S; Wang J; Ge T
    Soft Matter; 2022 Sep; 18(35):6582-6591. PubMed ID: 35968884
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonlinear microrheology of active Brownian suspensions.
    Burkholder EW; Brady JF
    Soft Matter; 2020 Jan; 16(4):1034-1046. PubMed ID: 31854425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combining molecular dynamics with Lattice Boltzmann: a hybrid method for the simulation of (charged) colloidal systems.
    Chatterji A; Horbach J
    J Chem Phys; 2005 May; 122(18):184903. PubMed ID: 15918761
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insight into the Viscoelasticity of Self-Assembling Smectic Liquid Crystals of Colloidal Rods from Active Microrheology Simulations.
    García Daza FA; Puertas AM; Cuetos A; Patti A
    J Chem Theory Comput; 2024 Feb; 20(4):1579-1589. PubMed ID: 37390389
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Brownian motion of a self-propelled particle.
    ten Hagen B; van Teeffelen S; Löwen H
    J Phys Condens Matter; 2011 May; 23(19):194119. PubMed ID: 21525563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thinning and thickening in active microrheology.
    Wang T; Sperl M
    Phys Rev E; 2016 Feb; 93(2):022606. PubMed ID: 26986376
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular dynamics simulation study of friction force and torque on a rough spherical particle.
    Kohale SC; Khare R
    J Chem Phys; 2010 Jun; 132(23):234706. PubMed ID: 20572733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of slip between a probe particle and a gel in microrheology.
    Fu HC; Shenoy VB; Powers TR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061503. PubMed ID: 19256842
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Smoluchowski dynamics of the vnd/NK-2 homeodomain from Drosophila melanogaster: first-order mode-coupling approximation.
    La Penna G; Mormino M; Pioli F; Perico A; Fioravanti R; Gruschus JM; Ferretti JA
    Biopolymers; 1999 Mar; 49(3):235-54. PubMed ID: 9990841
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trapped-particle microrheology of active suspensions.
    Peng Z; Brady JF
    J Chem Phys; 2022 Sep; 157(10):104119. PubMed ID: 36109215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Passive and active microrheology of hard-sphere colloids.
    Wilson LG; Harrison AW; Schofield AB; Arlt J; Poon WC
    J Phys Chem B; 2009 Mar; 113(12):3806-12. PubMed ID: 19673070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adiabatic limit collapse and local interaction effects in non-linear active microrheology molecular simulations of two-dimensional fluids.
    Munguía-Valadez J; Ledesma-Durán A; Moreno-Razo JA; Santamaría-Holek I
    Soft Matter; 2023 Jul; 19(28):5288-5299. PubMed ID: 37401648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tug of war in motility assay experiments.
    Hexner D; Kafri Y
    Phys Biol; 2009 Jul; 6(3):036016. PubMed ID: 19597265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Geometry-induced superdiffusion in driven crowded systems.
    Bénichou O; Bodrova A; Chakraborty D; Illien P; Law A; Mejía-Monasterio C; Oshanin G; Voituriez R
    Phys Rev Lett; 2013 Dec; 111(26):260601. PubMed ID: 24483787
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diffusion of spherical particles in microcavities.
    Imperio A; Padding JT; Briels WJ
    J Chem Phys; 2011 Apr; 134(15):154904. PubMed ID: 21513415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonlinear response and emerging nonequilibrium microstructures for biased diffusion in confined crowded environments.
    Bénichou O; Illien P; Oshanin G; Sarracino A; Voituriez R
    Phys Rev E; 2016 Mar; 93(3):032128. PubMed ID: 27078313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Entropic particle transport in periodic channels.
    Burada PS; Schmid G; Talkner P; Hänggi P; Reguera D; Rubí JM
    Biosystems; 2008; 93(1-2):16-22. PubMed ID: 18462863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.