BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23114273)

  • 1. Spectral cross-correlation as a supervised approach for the analysis of complex Raman datasets: the case of nanoparticles in biological cells.
    Keating ME; Bonnier F; Byrne HJ
    Analyst; 2012 Dec; 137(24):5792-802. PubMed ID: 23114273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying and localizing intracellular nanoparticles using Raman spectroscopy.
    Dorney J; Bonnier F; Garcia A; Casey A; Chambers G; Byrne HJ
    Analyst; 2012 Mar; 137(5):1111-9. PubMed ID: 22273712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of Raman Spectroscopic Signatures with Multivariate Statistics: An Approach for Cataloguing Microbial Biosignatures.
    Messmer MW; Dieser M; Smith HJ; Parker AE; Foreman CM
    Astrobiology; 2022 Jan; 22(1):14-24. PubMed ID: 34558961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Dimensional Clustering of Spectral Changes for the Interpretation of Raman Hyperspectra.
    Schulze HG; Rangan S; Vardaki MZ; Blades MW; Turner RFB; Piret JM
    Appl Spectrosc; 2023 Aug; 77(8):835-847. PubMed ID: 36238996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro monitoring of time and dose dependent cytotoxicity of aminated nanoparticles using Raman spectroscopy.
    Efeoglu E; Casey A; Byrne HJ
    Analyst; 2016 Sep; 141(18):5417-31. PubMed ID: 27373561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicological assessment of nanomaterials: the role of in vitro Raman microspectroscopic analysis.
    Efeoglu E; Maher MA; Casey A; Byrne HJ
    Anal Bioanal Chem; 2018 Feb; 410(6):1631-1646. PubMed ID: 29264675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colocalization of fluorescence and Raman microscopic images for the identification of subcellular compartments: a validation study.
    Krauß SD; Petersen D; Niedieker D; Fricke I; Freier E; El-Mashtoly SF; Gerwert K; Mosig A
    Analyst; 2015 Apr; 140(7):2360-8. PubMed ID: 25679809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Molecular Basis for Objective Discrimination of Breast Cancer Cells (MCF-7) from Normal Human Mammary Epithelial Cells by Raman Microspectroscopy and Multivariate Curve Resolution Analysis.
    Iwasaki K; Araki A; Krishna CM; Maruyama R; Yamamoto T; Noothalapati H
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33466869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman micro spectroscopy for in vitro drug screening: subcellular localisation and interactions of doxorubicin.
    Farhane Z; Bonnier F; Casey A; Byrne HJ
    Analyst; 2015 Jun; 140(12):4212-23. PubMed ID: 25919793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring doxorubicin cellular uptake and trafficking using in vitro Raman microspectroscopy: short and long time exposure effects on lung cancer cell lines.
    Farhane Z; Bonnier F; Byrne HJ
    Anal Bioanal Chem; 2017 Feb; 409(5):1333-1346. PubMed ID: 27888307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of subcellular responses for the evaluation and prediction of the chemotherapeutic response to cisplatin in lung adenocarcinoma using Raman spectroscopy.
    Nawaz H; Bonnier F; Meade AD; Lyng FM; Byrne HJ
    Analyst; 2011 Jun; 136(12):2450-63. PubMed ID: 21519610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic signature of ZnO NP-induced cell death modalities assessed by non-negative PCA.
    Miletić M; Vilotić A; Korićanac L; Žakula J; Krivokuća MJ; Dohčević-Mitrović Z; Aškrabić S
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Mar; 288():122180. PubMed ID: 36470088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discriminating isogenic cancer cells and identifying altered unsaturated fatty acid content as associated with metastasis status, using k-means clustering and partial least squares-discriminant analysis of Raman maps.
    Hedegaard M; Krafft C; Ditzel HJ; Johansen LE; Hassing S; Popp J
    Anal Chem; 2010 Apr; 82(7):2797-802. PubMed ID: 20187629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RamanCluster: A deep clustering-based framework for unsupervised Raman spectral identification of pathogenic bacteria.
    Sun Z; Wang Z; Jiang M
    Talanta; 2024 Aug; 275():126076. PubMed ID: 38663070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the molecular information contained in principal component analysis of vibrational spectra of biological systems.
    Bonnier F; Byrne HJ
    Analyst; 2012 Jan; 137(2):322-32. PubMed ID: 22114757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fingerprint-to-CH stretch continuously tunable high spectral resolution stimulated Raman scattering microscope.
    Laptenok SP; Rajamanickam VP; Genchi L; Monfort T; Lee Y; Patel II; Bertoncini A; Liberale C
    J Biophotonics; 2019 Sep; 12(9):e201900028. PubMed ID: 31081280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free live-cell imaging with confocal Raman microscopy.
    Klein K; Gigler AM; Aschenbrenner T; Monetti R; Bunk W; Jamitzky F; Morfill G; Stark RW; Schlegel J
    Biophys J; 2012 Jan; 102(2):360-8. PubMed ID: 22339873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid least squares and principal component analysis algorithm for Raman spectroscopy.
    Van de Sompel D; Garai E; Zavaleta C; Gambhir SS
    PLoS One; 2012; 7(6):e38850. PubMed ID: 22723895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilising non-consensus pathology measurements to improve the diagnosis of oesophageal cancer using a Raman spectroscopic probe.
    Lloyd GR; Almond LM; Stone N; Shepherd N; Sanders S; Hutchings J; Barr H; Kendall C
    Analyst; 2014 Jan; 139(2):381-8. PubMed ID: 24287592
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Byrne HJ; Bonnier F; Efeoglu E; Moore C; McIntyre J
    Front Bioeng Biotechnol; 2020; 8():544311. PubMed ID: 33195114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.