BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23114274)

  • 1. Circuit architecture explains functional similarity of bacterial heat shock responses.
    Inoue M; Mitarai N; Trusina A
    Phys Biol; 2012 Dec; 9(6):066003. PubMed ID: 23114274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis.
    Mogk A; Homuth G; Scholz C; Kim L; Schmid FX; Schumann W
    EMBO J; 1997 Aug; 16(15):4579-90. PubMed ID: 9303302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mycoplasmas regulate the expression of heat-shock protein genes through CIRCE-HrcA interactions.
    Chang LJ; Chen WH; Minion FC; Shiuan D
    Biochem Biophys Res Commun; 2008 Feb; 367(1):213-8. PubMed ID: 18164681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones.
    Rodriguez F; Arsène-Ploetze F; Rist W; Rüdiger S; Schneider-Mergener J; Mayer MP; Bukau B
    Mol Cell; 2008 Nov; 32(3):347-58. PubMed ID: 18995833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Genetic regulation of the heat-shock response in Escherichia coli].
    Ramírez Santos J; Solís Guzmán G; Gómez Eichelmann MC
    Rev Latinoam Microbiol; 2001; 43(1):51-63. PubMed ID: 17061571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32.
    Gamer J; Multhaup G; Tomoyasu T; McCarty JS; Rüdiger S; Schönfeld HJ; Schirra C; Bujard H; Bukau B
    EMBO J; 1996 Feb; 15(3):607-17. PubMed ID: 8599944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gut myoelectrical activity induces heat shock response in Escherichia coli and Caco-2 cells.
    Laubitz D; Jankowska A; Sikora A; Woliński J; Zabielski R; Grzesiuk E
    Exp Physiol; 2006 Sep; 91(5):867-75. PubMed ID: 16728456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial molecular chaperones.
    Lund PA
    Adv Microb Physiol; 2001; 44():93-140. PubMed ID: 11407116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation of Escherichi coli to elevated temperatures involves a change in stability of heat shock gene transcripts.
    Shenhar Y; Rasouly A; Biran D; Ron EZ
    Environ Microbiol; 2009 Dec; 11(12):2989-97. PubMed ID: 19624711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic interplay between antagonistic pathways controlling the sigma 32 level in Escherichia coli.
    Morita MT; Kanemori M; Yanagi H; Yura T
    Proc Natl Acad Sci U S A; 2000 May; 97(11):5860-5. PubMed ID: 10801971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and sequence analysis of rpoH genes encoding sigma 32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation.
    Nakahigashi K; Yanagi H; Yura T
    Nucleic Acids Res; 1995 Nov; 23(21):4383-90. PubMed ID: 7501460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription of the ibpB heat-shock gene is under control of sigma(32)- and sigma(54)-promoters, a third regulon of heat-shock response.
    Kuczyńska-Wisńik D; Laskowska E; Taylor A
    Biochem Biophys Res Commun; 2001 Jun; 284(1):57-64. PubMed ID: 11374870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2+-dependent expression of the CIRCE regulon in Streptococcus pneumoniae.
    Kwon HY; Kim SN; Pyo SN; Rhee DK
    Mol Microbiol; 2005 Jan; 55(2):456-68. PubMed ID: 15659163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Region C of the Escherichia coli heat shock sigma factor RpoH (sigma 32) contains a turnover element for proteolysis by the FtsH protease.
    Obrist M; Langklotz S; Milek S; Führer F; Narberhaus F
    FEMS Microbiol Lett; 2009 Jan; 290(2):199-208. PubMed ID: 19025566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of orthologous hrcA genes in Escherichia coli and Bacillus subtilis.
    Wiegert T; Hagmaier K; Schumann W
    FEMS Microbiol Lett; 2004 May; 234(1):9-17. PubMed ID: 15109714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning, sequencing, and transcriptional analysis of the dnaK heat shock operon of Listeria monocytogenes.
    Hanawa T; Kai M; Kamiya S; Yamamoto T
    Cell Stress Chaperones; 2000 Jan; 5(1):21-9. PubMed ID: 10701836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the heat-shock response.
    Yura T; Nakahigashi K
    Curr Opin Microbiol; 1999 Apr; 2(2):153-8. PubMed ID: 10322172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of action of the Escherichia coli phage shock protein PspA in repression of the AAA family transcription factor PspF.
    Elderkin S; Jones S; Schumacher J; Studholme D; Buck M
    J Mol Biol; 2002 Jun; 320(1):23-37. PubMed ID: 12079332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folding properties of the nucleotide exchange factor GrpE from Thermus thermophilus: GrpE is a thermosensor that mediates heat shock response.
    Groemping Y; Reinstein J
    J Mol Biol; 2001 Nov; 314(1):167-78. PubMed ID: 11724541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation to carbon starvation: RNase III ensures normal expression levels of bolA1p mRNA and sigma(S).
    Freire P; Amaral JD; Santos JM; Arraiano CM
    Biochimie; 2006; 88(3-4):341-6. PubMed ID: 16309817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.