These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23114274)

  • 21. Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE.
    Groemping Y; Klostermeier D; Herrmann C; Veit T; Seidel R; Reinstein J
    J Mol Biol; 2001 Feb; 305(5):1173-83. PubMed ID: 11162122
    [TBL] [Abstract][Full Text] [Related]  

  • 22. recA gene involvement in oxidative and thermal stress in Lactococcus lactis.
    Duwat P; Sourice S; Ehrlich SD; Gruss A
    Dev Biol Stand; 1995; 85():455-67. PubMed ID: 8586217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Escherichia coli DjlA and CbpA proteins can substitute for DnaJ in DnaK-mediated protein disaggregation.
    Gur E; Biran D; Shechter N; Genevaux P; Georgopoulos C; Ron EZ
    J Bacteriol; 2004 Nov; 186(21):7236-42. PubMed ID: 15489435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel interaction between the major bacterial heat shock chaperone (GroESL) and an RNA chaperone (CspC).
    Lenz G; Ron EZ
    J Mol Biol; 2014 Jan; 426(2):460-6. PubMed ID: 24148697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the sigma 32 transcription factor.
    Liberek K; Galitski TP; Zylicz M; Georgopoulos C
    Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3516-20. PubMed ID: 1565647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Induction of heat shock proteins by abnormal proteins results from stabilization and not increased synthesis of sigma 32 in Escherichia coli.
    Kanemori M; Mori H; Yura T
    J Bacteriol; 1994 Sep; 176(18):5648-53. PubMed ID: 7916010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of the heat-shock response in bacteria.
    Yura T; Nagai H; Mori H
    Annu Rev Microbiol; 1993; 47():321-50. PubMed ID: 7504905
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heat shock regulation of sigmaS turnover: a role for DnaK and relationship between stress responses mediated by sigmaS and sigma32 in Escherichia coli.
    Muffler A; Barth M; Marschall C; Hengge-Aronis R
    J Bacteriol; 1997 Jan; 179(2):445-52. PubMed ID: 8990297
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of Corynebacterium glutamicum heat shock response by the extracytoplasmic-function sigma factor SigH and transcriptional regulators HspR and HrcA.
    Ehira S; Teramoto H; Inui M; Yukawa H
    J Bacteriol; 2009 May; 191(9):2964-72. PubMed ID: 19270092
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quality control in the bacterial periplasm.
    Duguay AR; Silhavy TJ
    Biochim Biophys Acta; 2004 Nov; 1694(1-3):121-34. PubMed ID: 15546662
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptional regulation of stress-inducible genes in procaryotes.
    Yura T; Nakahigashi K; Kanemori M
    EXS; 1996; 77():165-81. PubMed ID: 8856974
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response.
    Guisbert E; Yura T; Rhodius VA; Gross CA
    Microbiol Mol Biol Rev; 2008 Sep; 72(3):545-54. PubMed ID: 18772288
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A mutation in dnaK causes stabilization of the heat shock sigma factor σ32, accumulation of heat shock proteins and increase in toluene-resistance in Pseudomonas putida.
    Kobayashi Y; Ohtsu I; Fujimura M; Fukumori F
    Environ Microbiol; 2011 Aug; 13(8):2007-17. PubMed ID: 20880327
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heat shock (sigma32 and HrcA/CIRCE) regulons in beta-, gamma- and epsilon-proteobacteria.
    Permina EA; Gelfand MS
    J Mol Microbiol Biotechnol; 2003; 6(3-4):174-81. PubMed ID: 15153770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased mistranslation protects E. coli from protein misfolding stress due to activation of a RpoS-dependent heat shock response.
    Evans CR; Fan Y; Ling J
    FEBS Lett; 2019 Nov; 593(22):3220-3227. PubMed ID: 31419308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stochastic kinetic analysis of the Escherichia coli stress circuit using sigma(32)-targeted antisense.
    Srivastava R; Peterson MS; Bentley WE
    Biotechnol Bioeng; 2001 Oct; 75(1):120-9. PubMed ID: 11536134
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of HrcA and CIRCE in the heat shock regulatory network of Bradyrhizobium japonicum.
    Minder AC; Fischer HM; Hennecke H; Narberhaus F
    J Bacteriol; 2000 Jan; 182(1):14-22. PubMed ID: 10613857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonnative proteins induce expression of the Bacillus subtilis CIRCE regulon.
    Mogk A; Völker A; Engelmann S; Hecker M; Schumann W; Völker U
    J Bacteriol; 1998 Jun; 180(11):2895-900. PubMed ID: 9603878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heat-shock response transcriptional program enables high-yield and high-quality recombinant protein production in Escherichia coli.
    Zhang X; Liu Y; Genereux JC; Nolan C; Singh M; Kelly JW
    ACS Chem Biol; 2014 Sep; 9(9):1945-9. PubMed ID: 25051296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PspF-binding domain PspA1-144 and the PspA·F complex: New insights into the coiled-coil-dependent regulation of AAA+ proteins.
    Osadnik H; Schöpfel M; Heidrich E; Mehner D; Lilie H; Parthier C; Risselada HJ; Grubmüller H; Stubbs MT; Brüser T
    Mol Microbiol; 2015 Nov; 98(4):743-59. PubMed ID: 26235546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.