These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 23114341)

  • 1. Assessing the tissue-imaging performance of confocal microscope architectures via Monte Carlo simulations.
    Chen Y; Wang D; Liu JT
    Opt Lett; 2012 Nov; 37(21):4495-7. PubMed ID: 23114341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of line-scanned and point-scanned dual-axis confocal microscope performance.
    Wang D; Chen Y; Wang Y; Liu JT
    Opt Lett; 2013 Dec; 38(24):5280-3. PubMed ID: 24322237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing the performance of dual-axis confocal microscopes via Monte-Carlo scattering simulations and diffraction theory.
    Chen Y; Liu JT
    J Biomed Opt; 2013 Jun; 18(6):066006. PubMed ID: 23733022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confocal microscopy in turbid media.
    Schmitt JM; Knüttel A; Yadlowsky M
    J Opt Soc Am A Opt Image Sci Vis; 1994 Aug; 11(8):2226-35. PubMed ID: 7931759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the imaging performance of light sheet microscopies in highly scattering tissues.
    Glaser AK; Wang Y; Liu JT
    Biomed Opt Express; 2016 Feb; 7(2):454-66. PubMed ID: 26977355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Monte Carlo simulation of confocal microscopy in biological tissue.
    Schmitt JM; Ben-Letaief K
    J Opt Soc Am A Opt Image Sci Vis; 1996 May; 13(5):952-61. PubMed ID: 8622177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved rejection of multiply scattered photons in confocal microscopy using dual-axes architecture.
    Wong LK; Mandella MJ; Kino GS; Wang TD
    Opt Lett; 2007 Jun; 32(12):1674-6. PubMed ID: 17572743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture.
    Liu JT; Mandella MJ; Crawford JM; Contag CH; Wang TD; Kino GS
    J Biomed Opt; 2008; 13(3):034020. PubMed ID: 18601565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo characterization of parallelized fluorescence confocal systems imaging in turbid media.
    Tanbakuchi AA; Rouse AR; Gmitro AF
    J Biomed Opt; 2009; 14(4):044024. PubMed ID: 19725735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring the scattering coefficient of turbid media from two-photon microscopy.
    Sevrain D; Dubreuil M; Leray A; Odin C; Le Grand Y
    Opt Express; 2013 Oct; 21(21):25221-35. PubMed ID: 24150363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulated-alignment dual-axis (MAD) confocal microscopy for deep optical sectioning in tissues.
    Leigh SY; Chen Y; Liu JT
    Biomed Opt Express; 2014 Jun; 5(6):1709-20. PubMed ID: 24940534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Miniature in vivo MEMS-based line-scanned dual-axis confocal microscope for point-of-care pathology.
    Yin C; Glaser AK; Leigh SY; Chen Y; Wei L; Pillai PC; Rosenberg MC; Abeytunge S; Peterson G; Glazowski C; Sanai N; Mandella MJ; Rajadhyaksha M; Liu JT
    Biomed Opt Express; 2016 Feb; 7(2):251-63. PubMed ID: 26977337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sheet-scanned dual-axis confocal microscopy using Richardson-Lucy deconvolution.
    Wang D; Meza D; Wang Y; Gao L; Liu JT
    Opt Lett; 2014 Sep; 39(18):5431-4. PubMed ID: 26466290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulated-Alignment Dual-Axis (MAD) Confocal Microscopy Optimized for Speed and Contrast.
    Leigh SY; Ye Chen ; Liu JTC
    IEEE Trans Biomed Eng; 2016 Oct; 63(10):2119-2124. PubMed ID: 28055837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific confocal fluorescence imaging of biological microstructures in a turbid medium.
    Saloma C; Palmes-Saloma C; Kondoh H
    Phys Med Biol; 1998 Jun; 43(6):1741-59. PubMed ID: 9651037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bessel-beam illumination in dual-axis confocal microscopy mitigates resolution degradation caused by refractive heterogeneities.
    Chen Y; Glaser A; Liu JT
    J Biophotonics; 2017 Jan; 10(1):68-74. PubMed ID: 27667127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confocal fluorescence polarization microscopy in turbid media: effects of scattering-induced depolarization.
    Bigelow CE; Foster TH
    J Opt Soc Am A Opt Image Sci Vis; 2006 Nov; 23(11):2932-43. PubMed ID: 17047721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A liquid optical phantom with tissue-like heterogeneities for confocal microscopy.
    Wang D; Chen Y; Liu JT
    Biomed Opt Express; 2012 Dec; 3(12):3153-60. PubMed ID: 23243566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media.
    Wang L; Jacques SL
    J Opt Soc Am A Opt Image Sci Vis; 1993 Aug; 10(8):1746-52. PubMed ID: 8350159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concurrent Reflectance Confocal Microscopy and Laser Doppler Flowmetry to Improve Skin Cancer Imaging: A Monte Carlo Model and Experimental Validation.
    Mowla A; Taimre T; Lim YL; Bertling K; Wilson SJ; Prow TW; Soyer HP; Rakić AD
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27598157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.