These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 23114348)

  • 21. Controlling the plasmonic orbital angular momentum by combining the geometric and dynamic phases.
    Tan Q; Guo Q; Liu H; Huang X; Zhang S
    Nanoscale; 2017 Apr; 9(15):4944-4949. PubMed ID: 28368060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transfer of orbital angular momentum through sub-wavelength waveguides.
    Wang Y; Ma X; Pu M; Li X; Huang C; Pan W; Zhao B; Cui J; Luo X
    Opt Express; 2015 Feb; 23(3):2857-62. PubMed ID: 25836146
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transfer of orbital angular momentum of light to plasmonic excitations in metamaterials.
    Arikawa T; Hiraoka T; Morimoto S; Blanchard F; Tani S; Tanaka T; Sakai K; Kitajima H; Sasaki K; Tanaka K
    Sci Adv; 2020 Jun; 6(24):eaay1977. PubMed ID: 32582843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of electron vortex beams carrying large orbital angular momentum using spiral zone plates.
    Saitoh K; Hasegawa Y; Tanaka N; Uchida M
    J Electron Microsc (Tokyo); 2012 Jun; 61(3):171-7. PubMed ID: 22394576
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Orbital angular momentum multiplication in plasmonic vortex cavities.
    Spektor G; Prinz E; Hartelt M; Mahro AK; Aeschlimann M; Orenstein M
    Sci Adv; 2021 Aug; 7(33):. PubMed ID: 34380618
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compensation of spin-orbit interaction using the geometric phase of distributed nanoslits for polarization-independent plasmonic vortex generation.
    Moon SW; Jeong HD; Lee S; Lee B; Ryu YS; Lee SY
    Opt Express; 2019 Jul; 27(14):19119-19129. PubMed ID: 31503675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phase-modulation based transmitarray convergence lens for vortex wave carrying orbital angular momentum.
    Meng Y; Yi J; Burokur SN; Kang L; Zhang H; Werner DH
    Opt Express; 2018 Aug; 26(17):22019-22029. PubMed ID: 30130903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmonic topological quasiparticle on the nanometre and femtosecond scales.
    Dai Y; Zhou Z; Ghosh A; Mong RSK; Kubo A; Huang CB; Petek H
    Nature; 2020 Dec; 588(7839):616-619. PubMed ID: 33361792
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generation of programmable 3D optical vortex structures through devil's vortex-lens arrays.
    Calabuig A; Sánchez-Ruiz S; Martínez-León L; Tajahuerce E; Fernández-Alonso M; Furlan WD; Monsoriu JA; Pons-Martí A
    Appl Opt; 2013 Aug; 52(23):5822-9. PubMed ID: 23938437
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Generating a plasmonic vortex field with arbitrary topological charges and positions by meta-nanoslits.
    Tang B; Zhang B; Ding J
    Appl Opt; 2019 Feb; 58(4):833-840. PubMed ID: 30874127
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vortex Beam Generation by Spin-Orbit Interaction with Bloch Surface Waves.
    Stella U; Grosjean T; De Leo N; Boarino L; Munzert P; Lakowicz JR; Descrovi E
    ACS Photonics; 2020 Mar; 7(3):774-783. PubMed ID: 33644254
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlling abruptly autofocusing vortex beams to mitigate crosstalk and vortex splitting in free-space optical communication.
    Yan X; Guo L; Cheng M; Li J
    Opt Express; 2018 May; 26(10):12605-12619. PubMed ID: 29801299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Short-range plasmonic nanofocusing within submicron regimes facilitates in situ probing and promoting of interfacial reactions.
    Yu CC; Lin KT; Su PY; Wang EY; Yen YT; Chen HL
    Nanoscale; 2016 Feb; 8(6):3647-59. PubMed ID: 26809318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generalization of helicoidal beams for short pulses.
    Thomas JL; Brunet T; Coulouvrat F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016601. PubMed ID: 20365485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Near-field collimation of light carrying orbital angular momentum with bull's-eye-assisted plasmonic coaxial waveguides.
    Pu M; Ma X; Zhao Z; Li X; Wang Y; Gao H; Hu C; Gao P; Wang C; Luo X
    Sci Rep; 2015 Jul; 5():12108. PubMed ID: 26159423
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A spiral plasmonic lens with directional excitation of surface plasmons.
    Guo Q; Zhang C; Hu X
    Sci Rep; 2016 Aug; 6():32345. PubMed ID: 27562227
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam.
    Yuan GH; Wang Q; Tan PS; Lin J; Yuan XC
    Nanotechnology; 2012 Sep; 23(38):385204. PubMed ID: 22948098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits.
    Mei S; Huang K; Liu H; Qin F; Mehmood MQ; Xu Z; Hong M; Zhang D; Teng J; Danner A; Qiu CW
    Nanoscale; 2016 Jan; 8(4):2227-33. PubMed ID: 26742094
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation of "perfect" vortex of variable size and its effect in angular spectrum of the down-converted photons.
    Jabir MV; Apurv Chaitanya N; Aadhi A; Samanta GK
    Sci Rep; 2016 Feb; 6():21877. PubMed ID: 26912184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Orbital angular momentum generation method based on transformation electromagnetics.
    Feng R; Yi J; Burokur SN; Kang L; Zhang H; Werner DH
    Opt Express; 2018 Apr; 26(9):11708-11717. PubMed ID: 29716089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.