These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 23114361)

  • 21. Bidimensional near-field sampling spectrometry.
    Renault M; Hadjar Y; Blaize S; Bruyant A; Arnaud L; Lerondel G; Royer P
    Opt Lett; 2010 Oct; 35(19):3303-5. PubMed ID: 20890367
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-domain and spectral-domain optical coherence tomography in the analysis of brain tumor tissue.
    Böhringer HJ; Boller D; Leppert J; Knopp U; Lankenau E; Reusche E; Hüttmann G; Giese A
    Lasers Surg Med; 2006 Jul; 38(6):588-97. PubMed ID: 16736504
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Balanced detection spectral domain optical coherence tomography with a multiline single camera for signal-to-noise ratio enhancement.
    Kuo WC; Lai YS; Lai CM; Huang YS
    Appl Opt; 2012 Aug; 51(24):5936-40. PubMed ID: 22907025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toward image quality assessment in optical coherence tomography (OCT) of rat kidney.
    Fang Y; Gong W; Li J; Li W; Tan J; Xie S; Huang Z
    Photodiagnosis Photodyn Ther; 2020 Dec; 32():101983. PubMed ID: 32896630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wide tuning range wavelength-swept laser with a single SOA at 1020 nm for ultrahigh resolution Fourier-domain optical coherence tomography.
    Lee SW; Song HW; Jung MY; Kim SH
    Opt Express; 2011 Oct; 19(22):21227-37. PubMed ID: 22108975
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlation of pathologic features in spectral domain optical coherence tomography with conventional retinal studies.
    Stopa M; Bower BA; Davies E; Izatt JA; Toth CA
    Retina; 2008 Feb; 28(2):298-308. PubMed ID: 18301035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectral optical coherence tomography in video-rate and 3D imaging of contact lens wear.
    Kaluzny BJ; Fojt W; Szkulmowska A; Bajraszewski T; Wojtkowski M; Kowalczyk A
    Optom Vis Sci; 2007 Dec; 84(12):1104-9. PubMed ID: 18091301
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography.
    Ruggeri M; Wehbe H; Jiao S; Gregori G; Jockovich ME; Hackam A; Duan Y; Puliafito CA
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1808-14. PubMed ID: 17389515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fully resolved lineshape measurement of a seeded and unseeded optical parametric oscillator using a virtually imaged phased array spectrometer.
    Limbach CM
    Opt Lett; 2019 Aug; 44(15):3821-3824. PubMed ID: 31368974
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography.
    Lan G; Li G
    Sci Rep; 2017 Mar; 7():42353. PubMed ID: 28266502
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectral dispersion modeling of virtually imaged phased array by using angular spectrum of plane waves.
    Hu X; Sun Q; Li J; Li C; Liu Y; Zhang J
    Opt Express; 2015 Jan; 23(1):1-12. PubMed ID: 25835648
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generalized grating equation for virtually-imaged phased-array spectral dispersers.
    Vega A; Weiner AM; Lin C
    Appl Opt; 2003 Jul; 42(20):4152-5. PubMed ID: 12856727
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A quantitative mode-resolved frequency comb spectrometer.
    Hébert NB; Scholten SK; White RT; Genest J; Luiten AN; Anstie JD
    Opt Express; 2015 Jun; 23(11):13991-4001. PubMed ID: 26072768
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scalable multiplexing for parallel imaging with interleaved optical coherence tomography.
    Lee HY; Marvdashti T; Duan L; Khan SA; Ellerbee AK
    Biomed Opt Express; 2014 Sep; 5(9):3192-203. PubMed ID: 25401031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-band, 1.9-μm axial resolution full-field optical coherence microscopy over a 530-1700 nm wavelength range using a single camera.
    Federici A; Dubois A
    Opt Lett; 2014 Mar; 39(6):1374-7. PubMed ID: 24690791
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second.
    An L; Li P; Shen TT; Wang R
    Biomed Opt Express; 2011 Oct; 2(10):2770-83. PubMed ID: 22025983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectral-domain optical coherence tomography with dual-balanced detection for auto-correlation artifacts reduction.
    Bo E; Liu X; Chen S; Yu X; Wang X; Liu L
    Opt Express; 2015 Oct; 23(21):28050-8. PubMed ID: 26480462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Design of a Component and Transmission Imaging Spectrometer].
    Sun BP; Zhang Y; Yue J; Han J; Bai LF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 May; 35(5):1414-8. PubMed ID: 26415470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Precise Determination of Brillouin Scattering Spectrum Using a Virtually Imaged Phase Array (VIPA) Spectrometer and Charge-Coupled Device (CCD) Camera.
    Meng Z; Yakovlev VV
    Appl Spectrosc; 2016 Aug; 70(8):1356-63. PubMed ID: 27296309
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 2D MEMS-based high-speed beam-shifting technique for speckle noise reduction and flow rate measurement in optical coherence tomography.
    Shi W; Chen C; Jivraj J; Dobashi Y; Gao W; Yang VX
    Opt Express; 2019 Apr; 27(9):12551-12564. PubMed ID: 31052795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.