BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 23114383)

  • 1. A glass fiber sheet-based electroosmotic lateral flow immunoassay for point-of-care testing.
    Oyama Y; Osaki T; Kamiya K; Kawano R; Honjoh T; Shibata H; Ide T; Takeuchi S
    Lab Chip; 2012 Dec; 12(24):5155-9. PubMed ID: 23114383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A blocking-free microfluidic fluorescence heterogeneous immunoassay for point-of-care diagnostics.
    Li P; Sherry AJ; Cortes JA; Anagnostopoulos C; Faghri M
    Biomed Microdevices; 2011 Jun; 13(3):475-83. PubMed ID: 21286818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates.
    Gervais L; Delamarche E
    Lab Chip; 2009 Dec; 9(23):3330-7. PubMed ID: 19904397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and testing of a disposable microfluidic chemiluminescent immunoassay for disease biomarkers in human serum samples.
    Bhattacharyya A; Klapperich CM
    Biomed Microdevices; 2007 Apr; 9(2):245-51. PubMed ID: 17165125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and performance of poly(methyl methacrylate) microfluidic chips with fiber cores.
    Fan H; Chen Z; Zhang L; Yang P; Chen G
    J Chromatogr A; 2008 Feb; 1179(2):224-8. PubMed ID: 18096173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring microchannel electroosmotic mobility and zeta potential by the current monitoring method.
    Shao C; Devoe DL
    Methods Mol Biol; 2013; 949():55-63. PubMed ID: 23329435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-chip determination of C-reactive protein using magnetic particles in continuous flow.
    Phurimsak C; Tarn MD; Peyman SA; Greenman J; Pamme N
    Anal Chem; 2014 Nov; 86(21):10552-9. PubMed ID: 25275437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical detection of high-sensitivity CRP inside a microfluidic device by numerical and experimental studies.
    Lee G; Park I; Kwon K; Kwon T; Seo J; Chang WJ; Nam H; Cha GS; Choi MH; Yoon DS; Lee SW
    Biomed Microdevices; 2012 Apr; 14(2):375-84. PubMed ID: 22143877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRP detection from serum for chip-based point-of-care testing system.
    Kim CH; Ahn JH; Kim JY; Choi JM; Lim KC; Park TJ; Heo NS; Lee HG; Kim JW; Choi YK
    Biosens Bioelectron; 2013 Mar; 41():322-7. PubMed ID: 23017687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous flow nanoparticle concentration using alternating current-electroosmotic flow.
    Hoettges KF; McDonnell MB; Hughes MP
    Electrophoresis; 2014 Feb; 35(4):467-73. PubMed ID: 24166772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triggering vacuum capillaries for pneumatic pumping and metering liquids in point-of-care immunoassays.
    Weng KY; Chou NJ; Cheng JW
    Lab Chip; 2008 Jul; 8(7):1216-9. PubMed ID: 18584101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunoassay of C-reactive protein by hot electron induced electrochemiluminescence using integrated electrodes with hydrophobic sample confinement.
    Ylinen-Hinkka T; Niskanen AJ; Franssila S; Kulmala S
    Anal Chim Acta; 2011 Sep; 702(1):45-9. PubMed ID: 21819858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplification of fluorescence with packed beads to enhance the sensitivity of miniaturized detection in microfluidic chip.
    Shin KS; Lee SW; Han KC; Kim SK; Yang EK; Park JH; Ju BK; Kang JY; Kim TS
    Biosens Bioelectron; 2007 Apr; 22(9-10):2261-7. PubMed ID: 17169549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid analysis of alpha-fetoprotein by chemiluminescence microfluidic immunoassay system based on super-paramagnetic microbeads.
    Huang H; Zheng XL; Zheng JS; Pan J; Pu XY
    Biomed Microdevices; 2009 Feb; 11(1):213-6. PubMed ID: 18923903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bead-based microfluidic immunoassay for diagnosis of Johne's disease.
    Wadhwa A; Foote RS; Shaw RW; Eda S
    J Immunol Methods; 2012 Aug; 382(1-2):196-202. PubMed ID: 22705087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic chip-based electrochemical immunoassay for hippuric acid.
    Yoo SJ; Choi YB; Ju JI; Tae GS; Kim HH; Lee SH
    Analyst; 2009 Dec; 134(12):2462-7. PubMed ID: 19918618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomous capillary system for one-step immunoassays.
    Zimmermann M; Hunziker P; Delamarche E
    Biomed Microdevices; 2009 Feb; 11(1):1-8. PubMed ID: 18810643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. System-on-fluidics immunoassay device integrating wireless radio-frequency-identification sensor chips.
    Yazawa Y; Oonishi T; Watanabe K; Shiratori A; Funaoka S; Fukushima M
    J Biosci Bioeng; 2014 Sep; 118(3):344-9. PubMed ID: 24735652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Practical High-Performance Lateral Flow Assay Based on Autonomous Microfluidic Replacement on a Film.
    Fuchiwaki Y; Goya K; Tanaka M
    Anal Sci; 2018; 34(1):57-63. PubMed ID: 29321459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A portable flow-through fluorescent immunoassay lab-on-a-chip device using ZnO nanorod-decorated glass capillaries.
    Hu W; Lu Z; Liu Y; Chen T; Zhou X; Li CM
    Lab Chip; 2013 May; 13(9):1797-802. PubMed ID: 23483058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.