BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23114416)

  • 21. Holding power of variable pitch screws in osteoporotic, osteopenic and normal bone: are all screws created equal?
    Ramaswamy R; Evans S; Kosashvili Y
    Injury; 2010 Feb; 41(2):179-83. PubMed ID: 19747678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Screw orientation and plate type (variable- vs. fixed-angle) effect strength of fixation for in vitro biomechanical testing of the Synthes CSLP.
    Dipaola CP; Jacobson JA; Awad H; Conrad BP; Rechtine GR
    Spine J; 2008; 8(5):717-22. PubMed ID: 17983846
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Salvaging the pullout strength of stripped screws in osteoporotic bone.
    Pechon PH; Mears SC; Langdale ER; Belkoff SM
    Geriatr Orthop Surg Rehabil; 2013 Jun; 4(2):50-2. PubMed ID: 24093076
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of screw pullout strength: a function of screw orientation in subtalar joint arthrodesis.
    McGlamry MC; Robitaille MF
    J Foot Ankle Surg; 2004; 43(5):277-84. PubMed ID: 15480401
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pullout strength of anterior spinal instrumentation: a product comparison of seven screws in calf vertebral bodies.
    Seller K; Wahl D; Wild A; Krauspe R; Schneider E; Linke B
    Eur Spine J; 2007 Jul; 16(7):1047-54. PubMed ID: 17273838
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The biomechanical effect of artificial and human bone density on stopping and stripping torque during screw insertion.
    Tsuji M; Crookshank M; Olsen M; Schemitsch EH; Zdero R
    J Mech Behav Biomed Mater; 2013 Jun; 22():146-56. PubMed ID: 23578764
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of pilot hole size and bone density on miniscrew implants' stability.
    Hung E; Oliver D; Kim KB; Kyung HM; Buschang PH
    Clin Implant Dent Relat Res; 2012 Jun; 14(3):454-60. PubMed ID: 20345986
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical study of pedicle screw fixation in severely osteoporotic bone.
    Cook SD; Salkeld SL; Stanley T; Faciane A; Miller SD
    Spine J; 2004; 4(4):402-8. PubMed ID: 15246300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of insertional temperature on the pullout strength of pedicle screws inserted into thoracic vertebrae: an in vitro calf study.
    Tosun B; Snmazçelik T; Buluç L; Cürgül I; Sarlak AY
    Spine (Phila Pa 1976); 2008 Sep; 33(19):E667-72. PubMed ID: 18758347
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-locking screw insertion: No benefit seen if tightness exceeds 80% of the maximum torque.
    Fletcher JWA; Ehrhardt B; MacLeod A; Whitehouse MR; Gill H; Preatoni E
    Clin Biomech (Bristol, Avon); 2019 Dec; 70():40-45. PubMed ID: 31386975
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Loosening of sacral screw fixation under in vitro fatigue loading.
    Lu WW; Zhu Q; Holmes AD; Luk KD; Zhong S; Leong JC
    J Orthop Res; 2000 Sep; 18(5):808-14. PubMed ID: 11117304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pullout strength of cancellous screws in human femoral heads depends on applied insertion torque, trabecular bone microarchitecture and areal bone mineral density.
    Ab-Lazid R; Perilli E; Ryan MK; Costi JJ; Reynolds KJ
    J Mech Behav Biomed Mater; 2014 Dec; 40():354-361. PubMed ID: 25265033
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanical analysis of pedicle screw thread differential design in an osteoporotic cadaver model.
    Mehta H; Santos E; Ledonio C; Sembrano J; Ellingson A; Pare P; Murrell B; Nuckley DJ
    Clin Biomech (Bristol, Avon); 2012 Mar; 27(3):234-40. PubMed ID: 22071427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pullout strength of pedicle screws augmented with particulate calcium phosphate: an experimental study.
    Hashemi A; Bednar D; Ziada S
    Spine J; 2009 May; 9(5):404-10. PubMed ID: 18790679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparison of pullout strength for pedicle screws of different designs: a study using tapped and untapped pilot holes.
    Pfeiffer FM; Abernathie DL; Smith DE
    Spine (Phila Pa 1976); 2006 Nov; 31(23):E867-70. PubMed ID: 17077722
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calcium phosphate cement augmentation of cancellous bone screws can compensate for the absence of cortical fixation.
    Stadelmann VA; Bretton E; Terrier A; Procter P; Pioletti DP
    J Biomech; 2010 Nov; 43(15):2869-74. PubMed ID: 20728888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A titanium expandable pedicle screw improves initial pullout strength as compared with standard pedicle screws.
    Vishnubhotla S; McGarry WB; Mahar AT; Gelb DE
    Spine J; 2011 Aug; 11(8):777-81. PubMed ID: 21802996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of pedicle screw pullout strength based on various screw designs and bone densities-an ex vivo biomechanical study.
    Kim YY; Choi WS; Rhyu KW
    Spine J; 2012 Feb; 12(2):164-8. PubMed ID: 22336467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanical measurements of cortical screw purchase in five types of human and artificial humeri.
    Aziz MS; Nicayenzi B; Crookshank MC; Bougherara H; Schemitsch EH; Zdero R
    J Mech Behav Biomed Mater; 2014 Feb; 30():159-67. PubMed ID: 24295967
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pullout strength of monocortical and bicortical screws in metaphyseal and diaphyseal regions of the canine humerus.
    Vaughn DP; Syrcle JA; Ball JE; Elder SH; Gambino JM; Griffin RL; McLaughlin RM
    Vet Comp Orthop Traumatol; 2016 Nov; 29(6):466-474. PubMed ID: 27709222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.