These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23114502)

  • 41. Production of L- and D-lactic acid from waste Curcuma longa biomass through simultaneous saccharification and cofermentation.
    Nguyen CM; Kim JS; Nguyen TN; Kim SK; Choi GJ; Choi YH; Jang KS; Kim JC
    Bioresour Technol; 2013 Oct; 146():35-43. PubMed ID: 23911815
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Efficient Conversion of Agroindustrial Waste into D(-) Lactic Acid by
    Beitel SM; Coelho LF; Contiero J
    Biomed Res Int; 2020; 2020():4194052. PubMed ID: 32382549
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coupling two sizes of CSTR-type bioreactors for sequential lactic acid and xylitol production from hemicellulosic hydrolysates of vineshoot trimmings.
    Salgado JM; Rodríguez N; Cortés S; Domínguez JM
    N Biotechnol; 2012 Feb; 29(3):421-7. PubMed ID: 21807126
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genome shuffling enhanced L-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus.
    Yu L; Pei X; Lei T; Wang Y; Feng Y
    J Biotechnol; 2008 Mar; 134(1-2):154-9. PubMed ID: 18289712
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fed-batch fermentation of Lactobacillus lactis for hyper-production of L-lactic acid.
    Bai DM; Wei Q; Yan ZH; Zhao XM; Li XG; Xu SM
    Biotechnol Lett; 2003 Nov; 25(21):1833-5. PubMed ID: 14677707
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Continuous production of L(+)-lactic acid by Lactobacillus casei in two-stage systems.
    Bruno-Bárcena JM; Ragout AL; Córdoba PR; Siñeriz F
    Appl Microbiol Biotechnol; 1999 Mar; 51(3):316-24. PubMed ID: 10222580
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Production of optically pure L-lactic acid from lignocellulosic hydrolysate by using a newly isolated and D-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain.
    Kuo YC; Yuan SF; Wang CA; Huang YJ; Guo GL; Hwang WS
    Bioresour Technol; 2015 Dec; 198():651-7. PubMed ID: 26433790
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Production of lactic acid from paper sludge by simultaneous saccharification and fermentation.
    Lee SM; Koo YM; Lin J
    Adv Biochem Eng Biotechnol; 2004; 87():173-94. PubMed ID: 15217107
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genome-shuffling improved acid tolerance and L-lactic acid volumetric productivity in Lactobacillus rhamnosus.
    Wang Y; Li Y; Pei X; Yu L; Feng Y
    J Biotechnol; 2007 May; 129(3):510-5. PubMed ID: 17320995
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Semi-industrial scale (30 m
    Fu X; Wang Y; Wang J; Garza E; Manow R; Zhou S
    J Ind Microbiol Biotechnol; 2017 Feb; 44(2):221-228. PubMed ID: 27900494
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor.
    Tay A; Yang ST
    Biotechnol Bioeng; 2002 Oct; 80(1):1-12. PubMed ID: 12209781
    [TBL] [Abstract][Full Text] [Related]  

  • 52. L-lactic acid production by Lactobacillus casei fermentation with corn steep liquor-supplemented acid-hydrolysate of soybean meal.
    Li Z; Ding S; Li Z; Tan T
    Biotechnol J; 2006 Dec; 1(12):1453-8. PubMed ID: 17089436
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Growth and exopolysaccharide production during free and immobilized cell chemostat culture of Lactobacillus rhamnosus RW-9595M.
    Bergmaier D; Champagne CP; Lacroix C
    J Appl Microbiol; 2005; 98(2):272-84. PubMed ID: 15659181
    [TBL] [Abstract][Full Text] [Related]  

  • 54. L(+)-lactic acid production using Lactobacillus casei in solid-state fermentation.
    Rojan PJ; Nampoothiri KM; Nair AS; Pandey A
    Biotechnol Lett; 2005 Nov; 27(21):1685-8. PubMed ID: 16247675
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Media and process parameters affecting the growth, strain ratios and specific acidifying activities of a mixed lactic starter containing aroma-producing and probiotic strains.
    Savoie S; Champagne CP; Chiasson S; Audet P
    J Appl Microbiol; 2007 Jul; 103(1):163-74. PubMed ID: 17584462
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kinetic analysis and mathematical modeling of growth and lactic acid production of Lactobacillus casei var. rhamnosus in milk whey.
    Alvarez MM; Aguirre-Ezkauriatza EJ; Ramírez-Medrano A; Rodríguez-Sánchez A
    J Dairy Sci; 2010 Dec; 93(12):5552-60. PubMed ID: 21094727
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Production of lactic acid and fructose from media with cane sugar using mutant of Lactobacillus delbrueckii NCIM 2365.
    Patil SS; Kadam SR; Patil SS; Bastawde KB; Khire JM; Gokhale DV
    Lett Appl Microbiol; 2006 Jul; 43(1):53-7. PubMed ID: 16834721
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives.
    John RP; Nampoothiri KM; Pandey A
    Appl Microbiol Biotechnol; 2007 Mar; 74(3):524-34. PubMed ID: 17225102
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lactic acid production from cellulosic material by synergetic hydrolysis and fermentation.
    Shen X; Xia L
    Appl Biochem Biotechnol; 2006 Jun; 133(3):251-62. PubMed ID: 16720905
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhanced production of optically pure d (-) lactic acid from nutritionally rich Borassus flabellifer sugar and whey protein hydrolysate based-fermentation medium.
    Reddy Tadi SR; E V R A; Limaye AM; Sivaprakasam S
    Biotechnol Appl Biochem; 2017 Mar; 64(2):279-289. PubMed ID: 26671214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.