These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 23114651)

  • 21. Flocking ferromagnetic colloids.
    Kaiser A; Snezhko A; Aranson IS
    Sci Adv; 2017 Feb; 3(2):e1601469. PubMed ID: 28246633
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Swarming and swirling in self-propelled polar granular rods.
    Kudrolli A; Lumay G; Volfson D; Tsimring LS
    Phys Rev Lett; 2008 Feb; 100(5):058001. PubMed ID: 18352433
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Living crystals of light-activated colloidal surfers.
    Palacci J; Sacanna S; Steinberg AP; Pine DJ; Chaikin PM
    Science; 2013 Feb; 339(6122):936-40. PubMed ID: 23371555
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transport and collective dynamics in suspensions of confined swimming particles.
    Hernandez-Ortiz JP; Stoltz CG; Graham MD
    Phys Rev Lett; 2005 Nov; 95(20):204501. PubMed ID: 16384062
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-lived giant number fluctuations in a swarming granular nematic.
    Narayan V; Ramaswamy S; Menon N
    Science; 2007 Jul; 317(5834):105-8. PubMed ID: 17615353
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Macroscopic model of self-propelled bacteria swarming with regular reversals.
    Gejji R; Lushnikov PM; Alber M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021903. PubMed ID: 22463240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Driving self-assembly and emergent dynamics in colloidal suspensions by time-dependent magnetic fields.
    Martin JE; Snezhko A
    Rep Prog Phys; 2013 Dec; 76(12):126601. PubMed ID: 24188920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Collective behavior of penetrable self-propelled rods in two dimensions.
    Abkenar M; Marx K; Auth T; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062314. PubMed ID: 24483451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Order-disorder transition in repulsive self-propelled particle systems.
    Hiraoka T; Shimada T; Ito N
    Phys Rev E; 2016 Dec; 94(6-1):062612. PubMed ID: 28085368
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles.
    Buttinoni I; Bialké J; Kümmel F; Löwen H; Bechinger C; Speck T
    Phys Rev Lett; 2013 Jun; 110(23):238301. PubMed ID: 25167534
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discontinuous shear thickening in Brownian suspensions.
    Kawasaki T; Berthier L
    Phys Rev E; 2018 Jul; 98(1-1):012609. PubMed ID: 30110811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cholesteric order in systems of helical Yukawa rods.
    Wensink HH; Jackson G
    J Phys Condens Matter; 2011 May; 23(19):194107. PubMed ID: 21525561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. (Ir)reversibility in dense granular systems driven by oscillating forces.
    Möbius R; Heussinger C
    Soft Matter; 2014 Jul; 10(27):4806-12. PubMed ID: 24838939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anomalous columnar order of charged colloidal platelets.
    Morales-Anda L; Wensink HH; Galindo A; Gil-Villegas A
    J Chem Phys; 2012 Jan; 136(3):034901. PubMed ID: 22280777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of shape on the glassy dynamics of hard nonspherical particle fluids. I. Dynamic crossover and elasticity.
    Tripathy M; Schweizer KS
    J Chem Phys; 2009 Jun; 130(24):244906. PubMed ID: 19566180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystallization in a dense suspension of self-propelled particles.
    Bialké J; Speck T; Löwen H
    Phys Rev Lett; 2012 Apr; 108(16):168301. PubMed ID: 22680759
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effective interactions between colloidal particles suspended in a bath of swimming cells.
    Angelani L; Maggi C; Bernardini ML; Rizzo A; Di Leonardo R
    Phys Rev Lett; 2011 Sep; 107(13):138302. PubMed ID: 22026908
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of sensory blind zones on milling behavior in a dynamic self-propelled particle model.
    Newman JP; Sayama H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011913. PubMed ID: 18763988
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isotropic-nematic transition of self-propelled rods in three dimensions.
    Bott MC; Winterhalter F; Marechal M; Sharma A; Brader JM; Wittmann R
    Phys Rev E; 2018 Jul; 98(1-1):012601. PubMed ID: 30110778
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamical self-regulation in self-propelled particle flows.
    Gopinath A; Hagan MF; Marchetti MC; Baskaran A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061903. PubMed ID: 23005123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.