These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23114881)

  • 21. Effects of flowing RBCs on adhesion of a circulating tumor cell in microvessels.
    Xiao LL; Liu Y; Chen S; Fu BM
    Biomech Model Mechanobiol; 2017 Apr; 16(2):597-610. PubMed ID: 27738841
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A micro-scale simulation of red blood cell passage through symmetric and asymmetric bifurcated vessels.
    Wang T; Rongin U; Xing Z
    Sci Rep; 2016 Feb; 6():20262. PubMed ID: 26830454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conductometric study of shear-dependent processes in red cell suspensions. II. Transient cross-stream hematocrit distribution.
    Pribush A; Meyerstein D; Meiselman HJ; Meyerstein N
    Biorheology; 2004; 41(1):29-43. PubMed ID: 14967888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Blood rheology and hemodynamics.
    Baskurt OK; Meiselman HJ
    Semin Thromb Hemost; 2003 Oct; 29(5):435-50. PubMed ID: 14631543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of red blood cell aggregation and blood viscosity by the covalent attachment of Pluronic copolymers.
    Armstrong JK; Meiselman HJ; Wenby RB; Fisher TC
    Biorheology; 2001; 38(2-3):239-47. PubMed ID: 11381178
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Radial dispersion of red blood cells in blood flowing through glass capillaries: the role of hematocrit and geometry.
    Lima R; Ishikawa T; Imai Y; Takeda M; Wada S; Yamaguchi T
    J Biomech; 2008 Jul; 41(10):2188-96. PubMed ID: 18589429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of exercise training on blood rheology: a meta-analysis.
    Romain AJ; Brun JF; Varlet-Marie E; Raynaud de Mauverger E
    Clin Hemorheol Microcirc; 2011; 49(1-4):199-205. PubMed ID: 22214690
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Hemorrheological modifications during normal pregnancy].
    Huisman A
    Rev Fr Gynecol Obstet; 1991 Feb; 86(2 Pt 2):143-7. PubMed ID: 1767164
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical simulation of blood flow through microvascular capillary networks.
    Pozrikidis C
    Bull Math Biol; 2009 Aug; 71(6):1520-41. PubMed ID: 19267162
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Red blood cell motions in high-hematocrit blood flowing through a stenosed microchannel.
    Fujiwara H; Ishikawa T; Lima R; Matsuki N; Imai Y; Kaji H; Nishizawa M; Yamaguchi T
    J Biomech; 2009 May; 42(7):838-43. PubMed ID: 19268948
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of suspending viscosity on red blood cell dynamics and blood flows in microvessels.
    Zhang J
    Microcirculation; 2011 Oct; 18(7):562-73. PubMed ID: 21624001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New trends in clinical hemorheology: an introduction to the concept of the hemorheological profile.
    Stoltz JF; Donner M
    Schweiz Med Wochenschr Suppl; 1991; 43():41-9. PubMed ID: 1843037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flows of healthy and hardened RBC suspensions through a micropillar array.
    Stathoulopoulos A; Passos A; Balabani S
    Med Eng Phys; 2022 Sep; 107():103874. PubMed ID: 36068027
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Red blood cell distribution in a microvascular network with successive bifurcations.
    Ye T; Peng L; Li G
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1821-1835. PubMed ID: 31161352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of red blood cell aggregation on velocity and cell-depleted layer characteristics of blood in a bifurcating microchannel.
    Sherwood JM; Dusting J; Kaliviotis E; Balabani S
    Biomicrofluidics; 2012 Jun; 6(2):24119. PubMed ID: 23667411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial variation of blood viscosity: modelling using shear fields measured by a μPIV based technique.
    Kaliviotis E; Dusting J; Balabani S
    Med Eng Phys; 2011 Sep; 33(7):824-31. PubMed ID: 20943426
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Velocity profile measurements by Laser-Doppler velocimetry (LDV) in plane capillaries in high concentrated medium. Application to human blood (author's transl)].
    Dufaux J; Mills P; Quemada D
    J Mal Vasc; 1981; 6(1):45-9. PubMed ID: 7288304
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic-Based Biosensor for Sequential Measurement of Blood Pressure and RBC Aggregation Over Continuously Varying Blood Flows.
    Kang YJ
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31480325
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrasonic backscatter from rat blood in aggregating media under in vitro rotational flow.
    Nam KH; Paeng DG; Choi MJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):270-9. PubMed ID: 19251514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the relative importance of rheology for image-based CFD models of the carotid bifurcation.
    Lee SW; Steinman DA
    J Biomech Eng; 2007 Apr; 129(2):273-8. PubMed ID: 17408332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.