These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 23115105)

  • 21. Property-optimized Gaussian basis sets for lanthanides.
    Rappoport D
    J Chem Phys; 2021 Sep; 155(12):124102. PubMed ID: 34598572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets.
    Hill JG; Peterson KA; Knizia G; Werner HJ
    J Chem Phys; 2009 Nov; 131(19):194105. PubMed ID: 19929044
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparison between plane wave and Gaussian-type orbital basis sets for hydrogen bonded systems: formic acid as a test case.
    Tosoni S; Tuma C; Sauer J; Civalleri B; Ugliengo P
    J Chem Phys; 2007 Oct; 127(15):154102. PubMed ID: 17949127
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Density functional theory optimized basis sets for gradient corrected functionals: 3d transition metal systems.
    Calaminici P; Janetzko F; Köster AM; Mejia-Olvera R; Zuniga-Gutierrez B
    J Chem Phys; 2007 Jan; 126(4):044108. PubMed ID: 17286463
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematically convergent correlation consistent basis sets for molecular core-valence correlation effects: the third-row atoms gallium through krypton.
    Deyonker NJ; Peterson KA; Wilson AK
    J Phys Chem A; 2007 Nov; 111(44):11383-93. PubMed ID: 17918918
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How to compute isomerization energies of organic molecules with quantum chemical methods.
    Grimme S; Steinmetz M; Korth M
    J Org Chem; 2007 Mar; 72(6):2118-26. PubMed ID: 17286442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases.
    VandeVondele J; Hutter J
    J Chem Phys; 2007 Sep; 127(11):114105. PubMed ID: 17887826
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The calculation of the static first and second susceptibilities of crystalline urea: A comparison of Hartree-Fock and density functional theory results obtained with the periodic coupled perturbed Hartree-Fock/Kohn-Sham scheme.
    Ferrero M; Civalleri B; Rérat M; Orlando R; Dovesi R
    J Chem Phys; 2009 Dec; 131(21):214704. PubMed ID: 19968357
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: evidence of small basis set superposition error compared to Gaussian basis sets.
    Inada Y; Orita H
    J Comput Chem; 2008 Jan; 29(2):225-32. PubMed ID: 17565500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contracted basis sets for density functional calculations: segmented versus general contraction.
    Jensen F
    J Chem Phys; 2005 Feb; 122(7):074111. PubMed ID: 15743225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of auxiliary basis sets for the LEDO expansion and a projection technique for LEDO-DFT.
    Götz AW; Kollmar C; Hess BA
    J Comput Chem; 2005 Sep; 26(12):1242-53. PubMed ID: 15962276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contracted Gaussian basis sets for Douglas-Kroll-Hess calculations: Estimating scalar relativistic effects of some atomic and molecular properties.
    Jorge FE; Canal Neto A; Camiletti GG; Machado SF
    J Chem Phys; 2009 Feb; 130(6):064108. PubMed ID: 19222268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4s, 5s, 6s, and 7s elements.
    Dyall KG
    J Phys Chem A; 2009 Nov; 113(45):12638-44. PubMed ID: 19670829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of density functional theory methods for the computation of heats of formation and ionization potentials of systems containing third row transition metals.
    Riley KE; Merz KM
    J Phys Chem A; 2007 Jul; 111(27):6044-53. PubMed ID: 17571862
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extended benchmark set for lattice parameters of inorganic solids.
    Lima EF; Bredow T
    J Comput Chem; 2024 Aug; ():. PubMed ID: 39134305
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and testing of a compact basis set for use in effective core potential calculations on rhodium complexes.
    Roscioni OM; Lee EP; Dyke JM
    J Comput Chem; 2012 Oct; 33(26):2049-57. PubMed ID: 22707403
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Franck-Condon simulation, including anharmonicity, of the photodetachment spectrum of P2H(-): restricted-spin coupled-cluster single-double plus perturbative triple and unrestricted-spin coupled-cluster single-double plus perturbative triple -F12x potential energy functions of P2H and P2H(-).
    Mok DK; Lee EP; Chau FT; Dyke JM
    J Chem Phys; 2011 Sep; 135(12):124312. PubMed ID: 21974527
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Error-Balanced Segmented Contracted Basis Sets of Double-ζ to Quadruple-ζ Valence Quality for the Lanthanides.
    Gulde R; Pollak P; Weigend F
    J Chem Theory Comput; 2012 Nov; 8(11):4062-8. PubMed ID: 26605573
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimal composition of atomic orbital basis sets for recovering static correlation energies.
    Wallace AJ; Crittenden DL
    J Phys Chem A; 2014 Mar; 118(11):2138-48. PubMed ID: 24552569
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quintuple-zeta quality coupled-cluster correlation energies with triple-zeta basis sets.
    Tew DP; Klopper W; Neiss C; Hättig C
    Phys Chem Chem Phys; 2007 Apr; 9(16):1921-30. PubMed ID: 17431520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.