BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 23115325)

  • 1. Hydrogen sulfide as an allosteric modulator of ATP-sensitive potassium channels in colonic inflammation.
    Gade AR; Kang M; Akbarali HI
    Mol Pharmacol; 2013 Jan; 83(1):294-306. PubMed ID: 23115325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered gene expression and increased bursting activity of colonic smooth muscle ATP-sensitive K+ channels in experimental colitis.
    Jin X; Malykhina AP; Lupu F; Akbarali HI
    Am J Physiol Gastrointest Liver Physiol; 2004 Jul; 287(1):G274-85. PubMed ID: 14962845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen sulfide dilates cerebral arterioles by activating smooth muscle cell plasma membrane KATP channels.
    Liang GH; Adebiyi A; Leo MD; McNally EM; Leffler CW; Jaggar JH
    Am J Physiol Heart Circ Physiol; 2011 Jun; 300(6):H2088-95. PubMed ID: 21421823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different molecular sites of action for the KATP channel inhibitors, PNU-99963 and PNU-37883A.
    Cui Y; Tinker A; Clapp LH
    Br J Pharmacol; 2003 May; 139(1):122-8. PubMed ID: 12746230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between hydrogen sulfide-induced sulfhydration and tyrosine nitration in the KATP channel complex.
    Kang M; Hashimoto A; Gade A; Akbarali HI
    Am J Physiol Gastrointest Liver Physiol; 2015 Mar; 308(6):G532-9. PubMed ID: 25552582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased expression of aortic KIR6.1 and SUR2B in hypertension does not correlate with changes in the functional role of K(ATP) channels.
    Blanco-Rivero J; Gamallo C; Aras-López R; Cobeño L; Cogolludo A; Pérez-Vizcaino F; Ferrer M; Balfagon G
    Eur J Pharmacol; 2008 Jun; 587(1-3):204-8. PubMed ID: 18471810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different glibenclamide-sensitivity of ATP-sensitive K+ currents using different patch-clamp recording methods.
    Teramoto N; Tomoda T; Yunoki T; Ito Y
    Eur J Pharmacol; 2006 Feb; 531(1-3):34-40. PubMed ID: 16438954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in the mechanism of metabolic regulation of ATP-sensitive K+ channels containing Kir6.1 and Kir6.2 subunits.
    Farzaneh T; Tinker A
    Cardiovasc Res; 2008 Sep; 79(4):621-31. PubMed ID: 18522960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular analysis of ATP-sensitive K⁺ channel subunits expressed in mouse vas deferens myocytes.
    Iwasa K; Zhu HL; Shibata A; Maehara Y; Teramoto N
    Br J Pharmacol; 2014 Jan; 171(1):145-57. PubMed ID: 24117345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Levcromakalim and MgGDP activate small conductance ATP-sensitive K+ channels of K+ channel pore 6.1/sulfonylurea receptor 2A in pig detrusor smooth muscle cells: uncoupling of cAMP signal pathways.
    Kajioka S; Nakayama S; Asano H; Seki N; Naito S; Brading AF
    J Pharmacol Exp Ther; 2008 Oct; 327(1):114-23. PubMed ID: 18596222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP-sensitive K(+) channels in rat colonic epithelium.
    Pouokam E; Bader S; Brück B; Schmidt B; Diener M
    Pflugers Arch; 2013 Jun; 465(6):865-77. PubMed ID: 23262522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis and characteristics of KATP channel in human corporal smooth muscle cells.
    Insuk SO; Chae MR; Choi JW; Yang DK; Sim JH; Lee SW
    Int J Impot Res; 2003 Aug; 15(4):258-66. PubMed ID: 12934053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein kinase C modulation of recombinant ATP-sensitive K(+) channels composed of Kir6.1 and/or Kir6.2 expressed with SUR2B.
    Thorneloe KS; Maruyama Y; Malcolm AT; Light PE; Walsh MP; Cole WC
    J Physiol; 2002 May; 541(Pt 1):65-80. PubMed ID: 12015420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP-sensitive K+ channels in pig urethral smooth muscle cells are heteromultimers of Kir6.1 and Kir6.2.
    Teramoto N; Zhu HL; Shibata A; Aishima M; Walsh EJ; Nagao M; Cole WC
    Am J Physiol Renal Physiol; 2009 Jan; 296(1):F107-17. PubMed ID: 18945825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and functional characterization of inwardly rectifying K
    Huang X; Lee SH; Lu H; Sanders KM; Koh SD
    J Physiol; 2018 Feb; 596(3):379-391. PubMed ID: 29205356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Actions of ZD0947, a novel ATP-sensitive K+ channel opener, on membrane currents in human detrusor myocytes.
    Aishima M; Tomoda T; Yunoki T; Nakano T; Seki N; Yonemitsu Y; Sueishi K; Naito S; Ito Y; Teramoto N
    Br J Pharmacol; 2006 Nov; 149(5):542-50. PubMed ID: 17016513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basal activation of ATP-sensitive potassium channels in murine colonic smooth muscle cell.
    Koh SD; Bradley KK; Rae MG; Keef KD; Horowitz B; Sanders KM
    Biophys J; 1998 Oct; 75(4):1793-800. PubMed ID: 9746521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique properties of the ATP-sensitive K⁺ channel in the mouse ventricular cardiac conduction system.
    Bao L; Kefaloyianni E; Lader J; Hong M; Morley G; Fishman GI; Sobie EA; Coetzee WA
    Circ Arrhythm Electrophysiol; 2011 Dec; 4(6):926-35. PubMed ID: 21984445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imipramine inhibits A-type delayed rectifier and ATP-sensitive K+ currents independent of G-protein and protein kinase C in murine proximal colonic myocytes.
    Choi S; Parajuli SP; Lim GH; Kim JH; Yeum CH; Yoon PJ; Jun JY
    Arch Pharm Res; 2006 Nov; 29(11):998-1005. PubMed ID: 17146969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of etomidate and midazolam on vascular adenosine triphosphate-sensitive potassium channels: isometric tension and patch clamp studies.
    Nakamura A; Kawahito S; Kawano T; Nazari H; Takahashi A; Kitahata H; Nakaya Y; Oshita S
    Anesthesiology; 2007 Mar; 106(3):515-22. PubMed ID: 17325510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.