These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 23115520)

  • 1. Application of genomic tools in plant breeding.
    Pérez-de-Castro AM; Vilanova S; Cañizares J; Pascual L; Blanca JM; Díez MJ; Prohens J; Picó B
    Curr Genomics; 2012 May; 13(3):179-95. PubMed ID: 23115520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Next generation breeding.
    Barabaschi D; Tondelli A; Desiderio F; Volante A; Vaccino P; Valè G; Cattivelli L
    Plant Sci; 2016 Jan; 242():3-13. PubMed ID: 26566820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Next generation sequencing and omics in cucumber (Cucumis sativus L.) breeding directed research.
    Pawełkowicz M; Zieliński K; Zielińska D; Pląder W; Yagi K; Wojcieszek M; Siedlecka E; Bartoszewski G; Skarzyńska A; Przybecki Z
    Plant Sci; 2016 Jan; 242():77-88. PubMed ID: 26566826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Genomic Technologies to the Breeding of Trees.
    Badenes ML; Fernández I Martí A; Ríos G; Rubio-Cabetas MJ
    Front Genet; 2016; 7():198. PubMed ID: 27895664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted amplicon sequencing + next-generation sequencing-based bulked segregant analysis identified genetic loci associated with preharvest sprouting tolerance in common buckwheat (Fagopyrum esculentum).
    Takeshima R; Ogiso-Tanaka E; Yasui Y; Matsui K
    BMC Plant Biol; 2021 Jan; 21(1):18. PubMed ID: 33407135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine mapping and gene cloning in the post-NGS era: advances and prospects.
    Jaganathan D; Bohra A; Thudi M; Varshney RK
    Theor Appl Genet; 2020 May; 133(5):1791-1810. PubMed ID: 32040676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sunflower Hybrid Breeding: From Markers to Genomic Selection.
    Dimitrijevic A; Horn R
    Front Plant Sci; 2017; 8():2238. PubMed ID: 29387071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current knowledge in lentil genomics and its application for crop improvement.
    Kumar S; Rajendran K; Kumar J; Hamwieh A; Baum M
    Front Plant Sci; 2015; 6():78. PubMed ID: 25755659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerating public sector rice breeding with high-density KASP markers derived from whole genome sequencing of
    Steele KA; Quinton-Tulloch MJ; Amgai RB; Dhakal R; Khatiwada SP; Vyas D; Heine M; Witcombe JR
    Mol Breed; 2018; 38(4):38. PubMed ID: 29563850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities.
    Bohra A; Jha UC; Kishor PB; Pandey S; Singh NP
    Biotechnol Adv; 2014 Dec; 32(8):1410-28. PubMed ID: 25196916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mapping and breeding with microsatellite markers.
    Lightfoot DA; Iqbal MJ
    Methods Mol Biol; 2013; 1006():297-317. PubMed ID: 23546799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses.
    Talukder SK; Saha MC
    Front Plant Sci; 2017; 8():1317. PubMed ID: 28798766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics.
    Varshney RK; Mohan SM; Gaur PM; Gangarao NV; Pandey MK; Bohra A; Sawargaonkar SL; Chitikineni A; Kimurto PK; Janila P; Saxena KB; Fikre A; Sharma M; Rathore A; Pratap A; Tripathi S; Datta S; Chaturvedi SK; Mallikarjuna N; Anuradha G; Babbar A; Choudhary AK; Mhase MB; Bharadwaj Ch; Mannur DM; Harer PN; Guo B; Liang X; Nadarajan N; Gowda CL
    Biotechnol Adv; 2013 Dec; 31(8):1120-34. PubMed ID: 23313999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Legume genomics and transcriptomics: From classic breeding to modern technologies.
    Afzal M; Alghamdi SS; Migdadi HH; Khan MA; Nurmansyah ; Mirza SB; El-Harty E
    Saudi J Biol Sci; 2020 Jan; 27(1):543-555. PubMed ID: 31889880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding.
    He J; Zhao X; Laroche A; Lu ZX; Liu H; Li Z
    Front Plant Sci; 2014; 5():484. PubMed ID: 25324846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max.
    Li B; Tian L; Zhang J; Huang L; Han F; Yan S; Wang L; Zheng H; Sun J
    BMC Genomics; 2014 Dec; 15(1):1086. PubMed ID: 25494922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic-based-breeding tools for tropical maize improvement.
    Chakradhar T; Hindu V; Reddy PS
    Genetica; 2017 Dec; 145(6):525-539. PubMed ID: 28875394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L.
    Yang H; Tao Y; Zheng Z; Li C; Sweetingham MW; Howieson JG
    BMC Genomics; 2012 Jul; 13():318. PubMed ID: 22805587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trait Mapping Approaches Through Association Analysis in Plants.
    Saba Rahim M; Sharma H; Parveen A; Roy JK
    Adv Biochem Eng Biotechnol; 2018; 164():83-108. PubMed ID: 29511776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.