These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
555 related articles for article (PubMed ID: 23115774)
1. Improved stabilities on surface-enhanced Raman scattering-active Ag/Al2O3 films on substrates. Mai FD; Yang KH; Liu YC; Hsu TC Analyst; 2012 Dec; 137(24):5906-12. PubMed ID: 23115774 [TBL] [Abstract][Full Text] [Related]
2. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species. Ou KL; Hsu TC; Liu YC; Yang KH; Tsai HY Anal Chim Acta; 2014 Jan; 806():188-96. PubMed ID: 24331055 [TBL] [Abstract][Full Text] [Related]
3. Surface-enhanced Raman scattering-active gold nanoparticles modified with a monolayer of silver film. Chang CC; Yang KH; Liu YC; Yu CC; Wu YH Analyst; 2012 Nov; 137(21):4943-50. PubMed ID: 22970430 [TBL] [Abstract][Full Text] [Related]
4. Electrochemically prepared surface-enhanced Raman scattering-active silver substrates with improved stabilities. Yang KH; Liu YC; Yu CC; Chen BC Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):383-8. PubMed ID: 21145781 [TBL] [Abstract][Full Text] [Related]
5. Using a photochemical method and chitosan to prepare surface-enhanced Raman scattering-active silver nanoparticles. Yang KH; Chang CM Anal Chim Acta; 2012 Jun; 729():1-6. PubMed ID: 22595427 [TBL] [Abstract][Full Text] [Related]
6. Dealloying Ag-Al alloy to prepare nanoporous silver as a substrate for surface-enhanced Raman scattering: effects of structural evolution and surface modification. Qiu H; Zhang Z; Huang X; Qu Y Chemphyschem; 2011 Aug; 12(11):2118-23. PubMed ID: 21626645 [TBL] [Abstract][Full Text] [Related]
7. Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation. Han Y; Lupitskyy R; Chou TM; Stafford CM; Du H; Sukhishvili S Anal Chem; 2011 Aug; 83(15):5873-80. PubMed ID: 21644591 [TBL] [Abstract][Full Text] [Related]
8. Room-temperature sensor based on surface-enhanced Raman spectroscopy. Yang KH; Mai FD; Yu CC; Liu YC Analyst; 2014 Oct; 139(20):5164-9. PubMed ID: 25112170 [TBL] [Abstract][Full Text] [Related]
9. Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution. Sivashanmugan K; Liao JD; Liu BH; Yao CK Anal Chim Acta; 2013 Oct; 800():56-64. PubMed ID: 24120168 [TBL] [Abstract][Full Text] [Related]
10. Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and Ag(core)Au(shell) nanoparticles. Bu Y; Lee S ACS Appl Mater Interfaces; 2012 Aug; 4(8):3923-31. PubMed ID: 22833686 [TBL] [Abstract][Full Text] [Related]
11. In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced Raman spectroscopy. Cui L; Chen P; Chen S; Yuan Z; Yu C; Ren B; Zhang K Anal Chem; 2013 Jun; 85(11):5436-43. PubMed ID: 23656550 [TBL] [Abstract][Full Text] [Related]
12. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Fan M; Brolo AG Phys Chem Chem Phys; 2009 Sep; 11(34):7381-9. PubMed ID: 19690709 [TBL] [Abstract][Full Text] [Related]
13. Surface-enhanced Raman activity and stability study of silver films prepared by reduction of Ag+ ions in N,N-dimethylformamide. Jia H; Zeng J; An J; Xu W; Zhao B J Colloid Interface Sci; 2005 Dec; 292(2):455-61. PubMed ID: 16061242 [TBL] [Abstract][Full Text] [Related]
20. Electrospun nanofibrous membranes surface-decorated with silver nanoparticles as flexible and active/sensitive substrates for surface-enhanced Raman scattering. Zhang L; Gong X; Bao Y; Zhao Y; Xi M; Jiang C; Fong H Langmuir; 2012 Oct; 28(40):14433-40. PubMed ID: 22974488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]