These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23116)

  • 21. Adenosine 5'-triphosphate synthesis driven by a protonmotive force in membrane vesicles of Escherichia coli.
    Tsuchiya T
    J Bacteriol; 1977 Feb; 129(2):763-9. PubMed ID: 14110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. D-Gluconate transport in Arthrobacter pyridinolis. Metabolic trapping of a protonated solute.
    Mandel KG; Krulwich TA
    Biochim Biophys Acta; 1979 Apr; 552(3):478-91. PubMed ID: 36144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Artificially induced active transport of amino acid driven by the efflux of a sugar via a heterologous transport system in de-energized Escherichia coli.
    Bentaboulet M; Robin A; Kepes A
    Biochem J; 1979 Jan; 178(1):103-7. PubMed ID: 35159
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mode of action of colicin Ia: effect of colicin on the Escherichia coli proton electrochemical gradient.
    Tokuda H; Konisky J
    Proc Natl Acad Sci U S A; 1978 Jun; 75(6):2579-83. PubMed ID: 26912
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A transport system for 2-keto-3-deoxy-D-gluconate uptake in Escherichia coli K12. Biochemical and physiological studies in whole cells.
    Lagarde AE; Pouysségur JM; Stoeber FR
    Eur J Biochem; 1973 Jul; 36(2):328-41. PubMed ID: 4581272
    [No Abstract]   [Full Text] [Related]  

  • 27. The active transport of 2-keto-D-gluconate in vesicles prepared from Pseudomonas purida.
    Agbanyo F; Taylor NF
    Biochem J; 1985 May; 228(1):257-62. PubMed ID: 4004814
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Accumulation of D glucuronate by the transport system of 2-keto-3-deoxy-D-gluconate in Escherichia coli K 12].
    Lagarde A; Pouysségur J; Stoeber F
    C R Acad Hebd Seances Acad Sci D; 1972 Oct; 275(16):1831-4. PubMed ID: 4629582
    [No Abstract]   [Full Text] [Related]  

  • 29. Escherichia coli K-12 structural kdgT mutants exhibiting thermosensitive 2-keto-3-deoxy-D-gluconate uptake.
    Lagarde AE; Stoeber FR
    J Bacteriol; 1977 Feb; 129(2):606-15. PubMed ID: 320187
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interconversion of components of the bacterial proton motive force by electrogenic potassium transport.
    Bakker EP; Mangerich WE
    J Bacteriol; 1981 Sep; 147(3):820-6. PubMed ID: 6268609
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Internal pH of isolated chromaffin vesicles.
    Johnson RG; Scarpa A
    J Biol Chem; 1976 Apr; 251(7):2189-91. PubMed ID: 5444
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrogenic and nonelectrogenic ion fluxes across lipid and mitochondrial membranes mediated by monensin and monensin ethyl ester.
    Antonenko YN; Rokitskaya TI; Huczyński A
    Biochim Biophys Acta; 2015 Apr; 1848(4):995-1004. PubMed ID: 25600660
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Utilization of gluconate by Escherichia coli. Uptake of D-gluconate by a mutant impaired in gluconate kinase activity and by membrane vesicles derived therefrom.
    Pouysségur JM; Faik P; Kornberg HL
    Biochem J; 1974 May; 140(2):193-203. PubMed ID: 4375960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control over the contribution of the mitochondrial membrane potential (DeltaPsi) and proton gradient (DeltapH) to the protonmotive force (Deltap). In silico studies.
    Dzbek J; Korzeniewski B
    J Biol Chem; 2008 Nov; 283(48):33232-9. PubMed ID: 18694940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. pH-dependent changes in proton:substrate stoichiometries during active transport in Escherichia coli membrane vesicles.
    Ramos S; Kaback HR
    Biochemistry; 1977 Sep; 16(19):4270-5. PubMed ID: 20136
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inducible gluconate permease in a gluconate kinase-deficient mutant of Escherichia coli.
    Robin A; Kepes A
    Biochim Biophys Acta; 1975 Sep; 406(1):50-9. PubMed ID: 1100123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of glucose and maltose transport in plasma-membrane vesicles from the yeast Candida utilis.
    van den Broek PJ; van Gompel AE; Luttik MA; Pronk JT; van Leeuwen CC
    Biochem J; 1997 Jan; 321 ( Pt 2)(Pt 2):487-95. PubMed ID: 9020885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coupling between the sodium and proton gradients in respiring Escherichia coli cells measured by 23Na and 31P nuclear magnetic resonance.
    Castle AM; Macnab RM; Shulman RG
    J Biol Chem; 1986 Jun; 261(17):7797-806. PubMed ID: 3011799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mechanism of maintenance of electroneutrality during the transport of gluconate by E. coli.
    Robin A; Kepes A
    FEBS Lett; 1973 Oct; 36(2):133-6. PubMed ID: 4585187
    [No Abstract]   [Full Text] [Related]  

  • 40. The proteoliposomal steady state. Effect of size, capacitance and membrane permeability on cytochrome-oxidase-induced ion gradients.
    Wrigglesworth JM; Cooper CE; Sharpe MA; Nicholls P
    Biochem J; 1990 Aug; 270(1):109-18. PubMed ID: 2168698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.