These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 23116)

  • 41. Artificially imposed electrical potentials drive L-glutamate uptake into synaptic vesicles of bovine cerebral cortex.
    Shioi J; Ueda T
    Biochem J; 1990 Apr; 267(1):63-8. PubMed ID: 1970243
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The nature of controlled respiration and its relationship to protonmotive force and proton conductance in blowfly flight-muscle mitochondria.
    Johnson RN; Hansford RG
    Biochem J; 1977 May; 164(2):305-22. PubMed ID: 195584
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impairment of pH gradient and membrane potential mediates redox dysfunction in the mitochondria of the post-ischemic heart.
    Kang PT; Chen CL; Lin P; Chilian WM; Chen YR
    Basic Res Cardiol; 2017 Jul; 112(4):36. PubMed ID: 28508960
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The protonmotive force in bovine heart submitochondrial particles. Magnitude, sites of generation and comparison with the phosphorylation potential.
    Sorgato MC; Ferguson SJ; Kell DB; John P
    Biochem J; 1978 Jul; 174(1):237-56. PubMed ID: 212021
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A role of H+ flux in active Ca2+ transport into sarcoplasmic reticulum vesicles. I. Effect of an artificially imposed H+ gradient on Ca2+ uptake.
    Ueno T; Sekine T
    J Biochem; 1981 Apr; 89(4):1239-46. PubMed ID: 6265434
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative analysis of proton-linked transport systems. The lactose permease of Escherichia coli.
    Booth IR; Mitchell WJ; Hamilton WA
    Biochem J; 1979 Sep; 182(3):687-96. PubMed ID: 42390
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The protonmotive force in phosphorylating membrane vesicles from Paracoccus denitrificans. Magnitude, sites of generation and comparison with the phosphorylation potential.
    Kell DB; John P; Ferguson SJ
    Biochem J; 1978 Jul; 174(1):257-66. PubMed ID: 212022
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The kinetics of the beta-galactoside-proton symport of Escherichia coli.
    Page MG; West IC
    Biochem J; 1981 Jun; 196(3):721-31. PubMed ID: 6274320
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The properties of citrate transport in membrane vesicles from Bacillus subtilis.
    Bergsma J; Konings WN
    Eur J Biochem; 1983 Jul; 134(1):151-6. PubMed ID: 6305655
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Roles of K+, H+, H2O, and DeltaPsi in solute transport mediated by major facilitator superfamily members ProP and LacY.
    Culham DE; Romantsov T; Wood JM
    Biochemistry; 2008 Aug; 47(31):8176-85. PubMed ID: 18620422
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Proton-coupled accumulation of galactoside in Streptococcus lactis 7962.
    Kashket ER; Wilson TH
    Proc Natl Acad Sci U S A; 1973 Oct; 70(10):2866-9. PubMed ID: 4200725
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Monitoring of the proton electrochemical gradient in reconstituted vesicles: quantitative measurements of both transmembrane potential and intravesicular pH by ratiometric fluorescent probes.
    Holoubek A; Vecer J; Sigler K
    J Fluoresc; 2007 Mar; 17(2):201-13. PubMed ID: 17279336
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanism of L-glutamate transport in membrane vesicles from Bacillus stearothermophilus.
    de Vrij W; Bulthuis RA; van Iwaarden PR; Konings WN
    J Bacteriol; 1989 Feb; 171(2):1118-25. PubMed ID: 2563364
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The protonmotive force and beta-galactoside transport in Bacillus acidocaldarius.
    Krulwich TA; Davidson LF; Filip SJ; Zuckerman RS; Guffanti AA
    J Biol Chem; 1978 Jul; 253(13):4599-603. PubMed ID: 26685
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Proton motive force during growth of Streptococcus lactis cells.
    Kashket ER; Blanchard AG; Metzger WC
    J Bacteriol; 1980 Jul; 143(1):128-34. PubMed ID: 6772626
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Proton-linked L-rhamnose transport, and its comparison with L-fucose transport in Enterobacteriaceae.
    Muiry JA; Gunn TC; McDonald TP; Bradley SA; Tate CG; Henderson PJ
    Biochem J; 1993 Mar; 290 ( Pt 3)(Pt 3):833-42. PubMed ID: 8384447
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microbial synthesis of 3-deoxy-D-erythro-hex-2-ulosonic acid 6-phosphate.
    Knappmann BR; el-Nawawy MA; Schlegel HG; Kula MR
    Carbohydr Res; 1993 Apr; 242():153-60. PubMed ID: 8495435
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cation transport in Escherichia coli. IX. Regulation of K transport.
    Rhoads DB; Epstein W
    J Gen Physiol; 1978 Sep; 72(3):283-95. PubMed ID: 359759
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Energy coupling of facilitated transport of inorganic ions in Rhodopseudomonas sphaeroides.
    Hellingwerf KJ; Friedberg I; Lolkema JS; Michels PA; Konings WN
    J Bacteriol; 1982 Jun; 150(3):1183-91. PubMed ID: 6281239
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Construction and expression of hybrid plasmids containing the structural gene of the Escherichia coli K-12 3-deoxy-2-oxo-D-gluconate transport system.
    Mandrand-Berthelot MA; Ritzenthaler P; Mata-Gilsinger M
    J Bacteriol; 1984 Nov; 160(2):600-6. PubMed ID: 6094479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.