BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 23116053)

  • 1. Functionalization of microstructured open-porous bioceramic scaffolds with human fetal bone cells.
    Krauss Juillerat F; Borcard F; Staedler D; Scaletta C; Applegate LA; Comas H; Gauckler LJ; Gerber-Lemaire S; Juillerat-Jeanneret L; Gonzenbach UT
    Bioconjug Chem; 2012 Nov; 23(11):2278-90. PubMed ID: 23116053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.
    Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F
    J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel calcium aluminate-melatonin scaffold enhances bone regeneration within a calvarial defect.
    Clafshenkel WP; Rutkowski JL; Palchesko RN; Romeo JD; McGowan KA; Gawalt ES; Witt-Enderby PA
    J Pineal Res; 2012 Sep; 53(2):206-18. PubMed ID: 22462771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds.
    Wu C; Miron R; Sculean A; Kaskel S; Doert T; Schulze R; Zhang Y
    Biomaterials; 2011 Oct; 32(29):7068-78. PubMed ID: 21704367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional porous bioscaffolds for bone tissue regeneration: fabrication via adaptive foam reticulation and freeze casting techniques, characterization, and cell study.
    Mallick KK; Winnett J; van Grunsven W; Lapworth J; Reilly GC
    J Biomed Mater Res A; 2012 Nov; 100(11):2948-59. PubMed ID: 22696264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro analysis and mechanical properties of twin screw extruded single-layered and coextruded multilayered poly(caprolactone) scaffolds seeded with human fetal osteoblasts for bone tissue engineering.
    Ergun A; Yu X; Valdevit A; Ritter A; Kalyon DM
    J Biomed Mater Res A; 2011 Dec; 99(3):354-66. PubMed ID: 22021183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous diopside (CaMgSi(2)O(6)) scaffold: A promising bioactive material for bone tissue engineering.
    Wu C; Ramaswamy Y; Zreiqat H
    Acta Biomater; 2010 Jun; 6(6):2237-45. PubMed ID: 20018260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications.
    Nie L; Chen D; Suo J; Zou P; Feng S; Yang Q; Yang S; Ye S
    Colloids Surf B Biointerfaces; 2012 Dec; 100():169-76. PubMed ID: 22766294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SEM and 3D synchrotron radiation micro-tomography in the study of bioceramic scaffolds for tissue-engineering applications.
    Peyrin F; Mastrogiacomo M; Cancedda R; Martinetti R
    Biotechnol Bioeng; 2007 Jun; 97(3):638-48. PubMed ID: 17089389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo evaluations of 3D porous TCP-coated and non-coated alumina scaffolds.
    Kim YH; Anirban JM; Song HY; Seo HS; Lee BT
    J Biomater Appl; 2011 Feb; 25(6):539-58. PubMed ID: 20207781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.
    Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y
    Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds.
    Chen QZ; Thouas GA
    Acta Biomater; 2011 Oct; 7(10):3616-26. PubMed ID: 21689791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced osteoblastic activity and bone regeneration using surface-modified porous bioactive glass scaffolds.
    San Miguel B; Kriauciunas R; Tosatti S; Ehrbar M; Ghayor C; Textor M; Weber FE
    J Biomed Mater Res A; 2010 Sep; 94(4):1023-33. PubMed ID: 20694969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering.
    Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X
    J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.
    Jiang T; Khan Y; Nair LS; Abdel-Fattah WI; Laurencin CT
    J Biomed Mater Res A; 2010 Jun; 93(3):1193-208. PubMed ID: 19777575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering.
    Sicchieri LG; Crippa GE; de Oliveira PT; Beloti MM; Rosa AL
    J Tissue Eng Regen Med; 2012 Feb; 6(2):155-62. PubMed ID: 21446054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of porosity and bio-functionalization to form a 3D scaffold: cell culture studies and in vitro degradation.
    Mittal A; Negi P; Garkhal K; Verma S; Kumar N
    Biomed Mater; 2010 Aug; 5(4):045001. PubMed ID: 20539055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes.
    Gorna K; Gogolewski S
    J Biomed Mater Res A; 2003 Dec; 67(3):813-27. PubMed ID: 14613229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.