BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 23116117)

  • 1. Structural parameters governing the dynamic combinatorial synthesis of catenanes in water.
    Cougnon FB; Ponnuswamy N; Jenkins NA; Pantoş GD; Sanders JK
    J Am Chem Soc; 2012 Nov; 134(46):19129-35. PubMed ID: 23116117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic combinatorial donor-acceptor catenanes in water: access to unconventional and unexpected structures.
    Au-Yeung HY; Pantoş GD; Sanders JK
    J Org Chem; 2011 Mar; 76(5):1257-68. PubMed ID: 21302944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the formation pathways of donor-acceptor catenanes in aqueous dynamic combinatorial libraries.
    Cougnon FB; Au-Yeung HY; Pantoş GD; Sanders JK
    J Am Chem Soc; 2011 Mar; 133(9):3198-207. PubMed ID: 21322647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplifying different [2]catenanes in an aqueous donor-acceptor dynamic combinatorial library.
    Au-Yeung HY; Dan Pantoş G; Sanders JK
    J Am Chem Soc; 2009 Nov; 131(44):16030-2. PubMed ID: 19831409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic combinatorial discovery of a [2]-catenane and its guest-induced conversion into a molecular square host.
    West KR; Ludlow RF; Corbett PT; Besenius P; Mansfeld FM; Cormack PA; Sherrington DC; Goodman JM; Stuart MC; Otto S
    J Am Chem Soc; 2008 Aug; 130(33):10834-5. PubMed ID: 18646752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplification of acetylcholine-binding catenanes from dynamic combinatorial libraries.
    Lam RT; Belenguer A; Roberts SL; Naumann C; Jarrosson T; Otto S; Sanders JK
    Science; 2005 Apr; 308(5722):667-9. PubMed ID: 15761119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Palladium(II)-directed self-assembly of dynamic donor-acceptor [2]catenanes.
    Liu Y; Bruneau A; He J; Abliz Z
    Org Lett; 2008 Mar; 10(5):765-8. PubMed ID: 18247625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual selectivity expressed in [2 + 2 + 1] dynamic clipping of unsymmetrical [2]catenanes.
    Koshkakaryan G; Cao D; Klivansky LM; Teat SJ; Tran JL; Liu Y
    Org Lett; 2010 Apr; 12(7):1528-31. PubMed ID: 20199052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled multi-component catenanes: the effect of multivalency and cooperativity on structure and stability.
    Chung MK; Lee SJ; Waters ML; Gagné MR
    J Am Chem Soc; 2012 Jul; 134(28):11430-43. PubMed ID: 22686511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic donor-acceptor [2]catenanes.
    Miljanic OS; Stoddart JF
    Proc Natl Acad Sci U S A; 2007 Aug; 104(32):12966-70. PubMed ID: 17670941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling switching in bistable [2]catenanes by combining donor-acceptor and radical-radical interactions.
    Zhu Z; Fahrenbach AC; Li H; Barnes JC; Liu Z; Dyar SM; Zhang H; Lei J; Carmieli R; Sarjeant AA; Stern CL; Wasielewski MR; Stoddart JF
    J Am Chem Soc; 2012 Jul; 134(28):11709-20. PubMed ID: 22769227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular recognition and self-assembly special feature: Dynamic combinatorial synthesis of a catenane based on donor-acceptor interactions in water.
    Au-Yeung HY; Pantos GD; Sanders JK
    Proc Natl Acad Sci U S A; 2009 Jun; 106(26):10466-70. PubMed ID: 19171892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing donor-acceptor interactions and co-conformational changes in redox active desymmetrized [2]catenanes.
    Cao D; Amelia M; Klivansky LM; Koshkakaryan G; Khan SI; Semeraro M; Silvi S; Venturi M; Credi A; Liu Y
    J Am Chem Soc; 2010 Jan; 132(3):1110-22. PubMed ID: 20043674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General method for synthesis of functionalized macrocycles and catenanes utilizing "click" chemistry.
    Megiatto JD; Schuster DI
    J Am Chem Soc; 2008 Oct; 130(39):12872-3. PubMed ID: 18767850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Holder Strategy for Efficient and Selective Synthesis of Lk 1 ssDNA Catenane.
    Li Q; Li J; Cui Y; Liu S; An R; Liang X; Komiyama M
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30189687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Yielding Synthesis of Chiral Donor-Acceptor Catenanes.
    Dehkordi ME; Luxami V; Pantoş GD
    J Org Chem; 2018 Oct; 83(19):11654-11660. PubMed ID: 30148959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model carbyne vs ideal and DNA catenanes.
    Dobrowolski JC; Mazurek AP
    J Chem Inf Model; 2005; 45(4):1030-8. PubMed ID: 16045298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic combinatorial libraries of hydrazone-linked pseudo-peptides: dependence of diversity on building block structure and chirality.
    Liu J; West KR; Bondy CR; Sanders JK
    Org Biomol Chem; 2007 Mar; 5(5):778-86. PubMed ID: 17315064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular liquid crystalline π-conjugates: the role of aromatic π-stacking and van der Waals forces on the molecular self-assembly of oligophenylenevinylenes.
    Goel M; Jayakannan M
    J Phys Chem B; 2010 Oct; 114(39):12508-19. PubMed ID: 20726547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular catenation via metal-directed self-assembly and pi-donor/pi-acceptor interactions: efficient one-pot synthesis, characterization, and crystal structures of [3]catenanes based on Pd or Pt dinuclear metallocycles.
    Blanco V; Chas M; Abella D; Peinador C; Quintela JM
    J Am Chem Soc; 2007 Nov; 129(45):13978-86. PubMed ID: 17956095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.