BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 23116539)

  • 1. Understanding of the size control of biocompatible gold nanoparticles in millifluidic channels.
    Jun H; Fabienne T; Florent M; Coulon PE; Nicolas M; Olivier S
    Langmuir; 2012 Nov; 28(45):15966-74. PubMed ID: 23116539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of gold nanoparticles in a biocompatible fluid from sputtering deposition onto castor oil.
    Wender H; de Oliveira LF; Feil AF; Lissner E; Migowski P; Meneghetti MR; Teixeira SR; Dupont J
    Chem Commun (Camb); 2010 Oct; 46(37):7019-21. PubMed ID: 20737077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time monitoring of copolymer stabilized growing gold nanoparticles.
    Polte J; Emmerling F; Radtke M; Reinholz U; Riesemeier H; Thünemann AF
    Langmuir; 2010 Apr; 26(8):5889-94. PubMed ID: 20085232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-pot tuning of Au nucleation and growth: from nanoclusters to nanoparticles.
    Lai SF; Chen WC; Wang CL; Chen HH; Chen ST; Chien CC; Chen YY; Hung WT; Cai X; Li E; Kempson IM; Hwu Y; Yang CS; Tok ES; Tan HR; Lin M; Margaritondo G
    Langmuir; 2011 Jul; 27(13):8424-9. PubMed ID: 21630657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-pot aqueous phase growth of biocompatible 15-130 nm gold nanoparticles stabilized with bidentate PEG.
    Oh E; Susumu K; Jain V; Kim M; Huston A
    J Colloid Interface Sci; 2012 Jun; 376(1):107-11. PubMed ID: 22480398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocompatible chemistry toward fabrication of target-specific gold nanoparticles.
    Kannan R; Rahing V; Cutler C; Pandrapragada R; Katti KK; Kattumuri V; Robertson JD; Casteel SJ; Jurisson S; Smith C; Boote E; Katti KV
    J Am Chem Soc; 2006 Sep; 128(35):11342-3. PubMed ID: 16939243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pH on the single-step synthesis of gold nanoparticles using PEO-PPO-PEO triblock copolymers in aqueous media.
    Shou Q; Guo C; Yang L; Jia L; Liu C; Liu H
    J Colloid Interface Sci; 2011 Nov; 363(2):481-9. PubMed ID: 21855892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable synthesis and acetylation of dendrimer-entrapped or dendrimer-stabilized gold-silver alloy nanoparticles.
    Liu H; Shen M; Zhao J; Guo R; Cao X; Zhang G; Shi X
    Colloids Surf B Biointerfaces; 2012 Jun; 94():58-67. PubMed ID: 22326342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-situ synthesis of poly(dimethylsiloxane)-gold nanoparticles composite films and its application in microfluidic systems.
    Zhang Q; Xu JJ; Liu Y; Chen HY
    Lab Chip; 2008 Feb; 8(2):352-7. PubMed ID: 18231677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monodisperse sub-10 nm gold nanoparticles by reversing the order of addition in Turkevich method--the role of chloroauric acid.
    Sivaraman SK; Kumar S; Santhanam V
    J Colloid Interface Sci; 2011 Sep; 361(2):543-7. PubMed ID: 21719021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct synthesis of large water-soluble functionalized gold nanoparticles using Bunte salts as ligand precursors.
    Lohse SE; Dahl JA; Hutchison JE
    Langmuir; 2010 May; 26(10):7504-11. PubMed ID: 20180591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size controlled synthesis of biocompatible gold nanoparticles and their activity in the oxidation of NADH.
    Chandran PR; Naseer M; Udupa N; Sandhyarani N
    Nanotechnology; 2012 Jan; 23(1):015602. PubMed ID: 22156111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alkynylisocyanide gold mesogens as precursors of gold nanoparticles.
    Chico R; Castillejos E; Serp P; Coco S; Espinet P
    Inorg Chem; 2011 Sep; 50(17):8654-62. PubMed ID: 21815613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring the synthesis and heating ability of gold nanoprisms for bioapplications.
    Pelaz B; Grazu V; Ibarra A; Magen C; del Pino P; de la Fuente JM
    Langmuir; 2012 Jun; 28(24):8965-70. PubMed ID: 22260484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis of robust and biocompatible gold nanoparticles.
    Jang H; Kim YK; Ryoo SR; Kim MH; Min DH
    Chem Commun (Camb); 2010 Jan; 46(4):583-5. PubMed ID: 20062869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of monomer feeding on a fast gold nanoparticles synthesis: time-resolved XANES and SAXS experiments.
    Abécassis B; Testard F; Kong Q; Francois B; Spalla O
    Langmuir; 2010 Sep; 26(17):13847-54. PubMed ID: 20704344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidic concentration-gradient droplet array generator for the production of multi-color nanoparticles.
    Yang CG; Xu ZR; Lee AP; Wang JH
    Lab Chip; 2013 Jul; 13(14):2815-20. PubMed ID: 23674199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The synthesis and characterization of polymer-coated FeAu multifunctional nanoparticles.
    Liu H; Hou P; Zhang W; Kim YK; Wu J
    Nanotechnology; 2010 Aug; 21(33):335602. PubMed ID: 20657041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of size and shape of Au nanoparticles using amino-X-shaped poly(ethylene oxide)-poly(propylene oxide) block copolymers.
    Goy-López S; Taboada P; Cambón A; Juárez J; Alvarez-Lorenzo C; Concheiro A; Mosquera V
    J Phys Chem B; 2010 Jan; 114(1):66-76. PubMed ID: 19968275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of pH-responsive nanocomposite microgels with size-controlled gold nanoparticles from ion-doped, lightly cross-linked poly(vinylpyridine).
    Akamatsu K; Shimada M; Tsuruoka T; Nawafune H; Fujii S; Nakamura Y
    Langmuir; 2010 Jan; 26(2):1254-9. PubMed ID: 19817404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.