BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 23116567)

  • 1. Enhanced MK-801-induced locomotion in Kir6.2 knockout mice.
    Zhou Y; Liu MD; Fan Y; Ding JH; Du RH; Hu G
    Neurosci Res; 2012 Dec; 74(3-4):195-9. PubMed ID: 23116567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebral glucose transporters expression and spatial learning in the K-ATP Kir6.2(-/-) knockout mice.
    Choeiri C; Staines WA; Miki T; Seino S; Renaud JM; Teutenberg K; Messier C
    Behav Brain Res; 2006 Sep; 172(2):233-9. PubMed ID: 16797737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavioral phenotyping of mice lacking the K ATP channel subunit Kir6.2.
    Deacon RM; Brook RC; Meyer D; Haeckel O; Ashcroft FM; Miki T; Seino S; Liss B
    Physiol Behav; 2006 Apr; 87(4):723-33. PubMed ID: 16530794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-sensitive K+ channels in pig urethral smooth muscle cells are heteromultimers of Kir6.1 and Kir6.2.
    Teramoto N; Zhu HL; Shibata A; Aishima M; Walsh EJ; Nagao M; Cole WC
    Am J Physiol Renal Physiol; 2009 Jan; 296(1):F107-17. PubMed ID: 18945825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kir6.2-deficient mice are susceptible to stimulated ANP secretion: K(ATP) channel acts as a negative feedback mechanism?
    Saegusa N; Sato T; Saito T; Tamagawa M; Komuro I; Nakaya H
    Cardiovasc Res; 2005 Jul; 67(1):60-8. PubMed ID: 15949470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP-sensitive potassium channels participate in glucose uptake in skeletal muscle and adipose tissue.
    Miki T; Minami K; Zhang L; Morita M; Gonoi T; Shiuchi T; Minokoshi Y; Renaud JM; Seino S
    Am J Physiol Endocrinol Metab; 2002 Dec; 283(6):E1178-84. PubMed ID: 12388128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene targeting approach to clarification of ion channel function: studies of Kir6.x null mice.
    Seino S; Miki T
    J Physiol; 2004 Jan; 554(Pt 2):295-300. PubMed ID: 12826653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parametrisation of the free energy of ATP binding to wild-type and mutant Kir6.2 potassium channels.
    Moran O; Grottesi A; Chadburn AJ; Tammaro P
    Biophys Chem; 2013 Jan; 171():76-83. PubMed ID: 23219002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP-sensitive potassium channels: uncovering novel targets for treating depression.
    Fan Y; Kong H; Ye X; Ding J; Hu G
    Brain Struct Funct; 2016 Jul; 221(6):3111-22. PubMed ID: 26289962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kir6.1 is the principal pore-forming subunit of astrocyte but not neuronal plasma membrane K-ATP channels.
    Thomzig A; Wenzel M; Karschin C; Eaton MJ; Skatchkov SN; Karschin A; Veh RW
    Mol Cell Neurosci; 2001 Dec; 18(6):671-90. PubMed ID: 11749042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defects in myoglobin oxygenation in K(ATP)-deficient mouse hearts under normal and stress conditions characterized by near infrared spectroscopy and imaging.
    Jilkina O; Glogowski M; Kuzio B; Zhilkin PA; Gussakovsky E; Kupriyanov VV
    Int J Cardiol; 2011 Jun; 149(3):315-22. PubMed ID: 20202704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kir6.2 knockout alters neurotransmitter release in mouse striatum: an in vivo microdialysis study.
    Shi XR; Chang J; Ding JH; Fan Y; Sun XL; Hu G
    Neurosci Lett; 2008 Jul; 439(3):230-4. PubMed ID: 18524485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of hippocampal CA3 K(ATP) channels in contextual memory.
    Betourne A; Bertholet AM; Labroue E; Halley H; Sun HS; Lorsignol A; Feng ZP; French RJ; Penicaud L; Lassalle JM; Frances B
    Neuropharmacology; 2009 Mar; 56(3):615-25. PubMed ID: 19059420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP-sensitive K+ channel-mediated glucose uptake is independent of IRS-1/phosphatidylinositol 3-kinase signaling.
    Minami K; Morita M; Saraya A; Yano H; Terauchi Y; Miki T; Kuriyama T; Kadowaki T; Seino S
    Am J Physiol Endocrinol Metab; 2003 Dec; 285(6):E1289-96. PubMed ID: 12933351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene knockout of the KCNJ8-encoded Kir6.1 K(ATP) channel imparts fatal susceptibility to endotoxemia.
    Kane GC; Lam CF; O'Cochlain F; Hodgson DM; Reyes S; Liu XK; Miki T; Seino S; Katusic ZS; Terzic A
    FASEB J; 2006 Nov; 20(13):2271-80. PubMed ID: 17077304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced neuronal damage after ischemic insults in mice lacking Kir6.2-containing ATP-sensitive K+ channels.
    Sun HS; Feng ZP; Miki T; Seino S; French RJ
    J Neurophysiol; 2006 Apr; 95(4):2590-601. PubMed ID: 16354731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons.
    Liss B; Haeckel O; Wildmann J; Miki T; Seino S; Roeper J
    Nat Neurosci; 2005 Dec; 8(12):1742-51. PubMed ID: 16299504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the gene and protein expression of K(ATP) channel subunits in the hippocampus of rats subjected to picrotoxin-induced kindling.
    Jiang K; Shui Q; Xia Z; Yu Z
    Brain Res Mol Brain Res; 2004 Sep; 128(1):83-9. PubMed ID: 15337320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional role of the activity of ATP-sensitive potassium channels in electrical behavior of hippocampal neurons: experimental and theoretical studies.
    Chen BS; Wu SN
    J Theor Biol; 2011 Mar; 272(1):16-25. PubMed ID: 21145327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional modulation of the ATP-sensitive potassium channel by extracellular signal-regulated kinase-mediated phosphorylation.
    Lin YF; Chai Y
    Neuroscience; 2008 Mar; 152(2):371-80. PubMed ID: 18280666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.