BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 23116820)

  • 1. Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process.
    Du Z; Hu B; Shi A; Ma X; Cheng Y; Chen P; Liu Y; Lin X; Ruan R
    Bioresour Technol; 2012 Dec; 126():354-7. PubMed ID: 23116820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced mixotrophic growth of microalga Chlorella sp. on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal.
    Hu B; Min M; Zhou W; Du Z; Mohr M; Chen P; Zhu J; Cheng Y; Liu Y; Ruan R
    Bioresour Technol; 2012 Dec; 126():71-9. PubMed ID: 23073091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of drainage solution from hydroponic greenhouse production with microalgae.
    Hultberg M; Carlsson AS; Gustafsson S
    Bioresour Technol; 2013 May; 136():401-6. PubMed ID: 23567708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition.
    Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock.
    Ho SH; Huang SW; Chen CY; Hasunuma T; Kondo A; Chang JS
    Bioresour Technol; 2013 May; 135():191-8. PubMed ID: 23116819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cultivation of Chlorella vulgaris in wastewater with waste glycerol: Strategies for improving nutrients removal and enhancing lipid production.
    Ma X; Zheng H; Addy M; Anderson E; Liu Y; Chen P; Ruan R
    Bioresour Technol; 2016 May; 207():252-61. PubMed ID: 26894565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic effects and optimization of nitrogen and phosphorus concentrations on the growth and nutrient uptake of a freshwater Chlorella vulgaris.
    Alketife AM; Judd S; Znad H
    Environ Technol; 2017 Jan; 38(1):94-102. PubMed ID: 27152999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source.
    Abreu AP; Fernandes B; Vicente AA; Teixeira J; Dragone G
    Bioresour Technol; 2012 Aug; 118():61-6. PubMed ID: 22705507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-continuous cultivation of Chlorella vulgaris for treating undigested and digested dairy manures.
    Wang L; Wang Y; Chen P; Ruan R
    Appl Biochem Biotechnol; 2010 Dec; 162(8):2324-32. PubMed ID: 20567935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of CO₂ supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Dec; 126():24-30. PubMed ID: 23073086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.
    Yeh KL; Chang JS
    Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and validation of a minimal growth medium for recycling Chlorella vulgaris culture.
    Hadj-Romdhane F; Jaouen P; Pruvost J; Grizeau D; Van Vooren G; Bourseau P
    Bioresour Technol; 2012 Nov; 123():366-74. PubMed ID: 22940343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of various abiotic factors on biomass growth and lipid yield of Chlorella minutissima for sustainable biodiesel production.
    Chandra R; Amit ; Ghosh UK
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3848-3861. PubMed ID: 30539390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E.
    Ho SH; Huang SW; Chen CY; Hasunuma T; Kondo A; Chang JS
    Bioresour Technol; 2013 May; 135():157-65. PubMed ID: 23186680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production.
    Cho S; Luong TT; Lee D; Oh YK; Lee T
    Bioresour Technol; 2011 Sep; 102(18):8639-45. PubMed ID: 21474308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation.
    Kim KH; Choi IS; Kim HM; Wi SG; Bae HJ
    Bioresour Technol; 2014 Feb; 153():47-54. PubMed ID: 24333701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31.
    Yeh KL; Chang JS
    Bioresour Technol; 2012 Feb; 105():120-7. PubMed ID: 22189073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency.
    Chu FF; Chu PN; Cai PJ; Li WW; Lam PK; Zeng RJ
    Bioresour Technol; 2013 Apr; 134():341-6. PubMed ID: 23517904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling anaerobic digestion of microalgae using ADM1.
    Mairet F; Bernard O; Ras M; Lardon L; Steyer JP
    Bioresour Technol; 2011 Jul; 102(13):6823-9. PubMed ID: 21536430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.