BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 23117187)

  • 1. Optimal extraction and hydrolysis of Chlorella pyrenoidosa proteins.
    Wang X; Zhang X
    Bioresour Technol; 2012 Dec; 126():307-13. PubMed ID: 23117187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic hydrolysis of heated whey: iron-binding ability of peptides and antigenic protein fractions.
    Kim SB; Seo IS; Khan MA; Ki KS; Lee WS; Lee HJ; Shin HS; Kim HS
    J Dairy Sci; 2007 Sep; 90(9):4033-42. PubMed ID: 17699019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of neutrase, alcalase, and papain hydrolysis of whey protein concentrates on iron uptake by Caco-2 cells.
    Ou K; Liu Y; Zhang L; Yang X; Huang Z; Nout MJ; Liang J
    J Agric Food Chem; 2010 Apr; 58(8):4894-900. PubMed ID: 20230001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation and nanoencapsulation of antitumor polypeptide from Spirulina platensis.
    Zhang B; Zhang X
    Biotechnol Prog; 2013; 29(5):1230-8. PubMed ID: 23836728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidant activity of zein hydrolysates in a liposome system and the possible mode of action.
    Kong B; Xiong YL
    J Agric Food Chem; 2006 Aug; 54(16):6059-68. PubMed ID: 16881717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of ultrasonic-ionic liquid pretreatment on the hydrolysis degree and antigenicity of enzymatic hydrolysates from whey protein.
    Zhang Q; Chen QH; He GQ
    Ultrason Sonochem; 2020 May; 63():104926. PubMed ID: 31945568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic liquids-based hydrolysis of Chlorella biomass for fermentable sugars.
    Zhou N; Zhang Y; Gong X; Wang Q; Ma Y
    Bioresour Technol; 2012 Aug; 118():512-7. PubMed ID: 22717571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound-Enhanced Subcritical CO2 Extraction of Lutein from Chlorella pyrenoidosa.
    Fan XD; Hou Y; Huang XX; Qiu TQ; Jiang JG
    J Agric Food Chem; 2015 May; 63(18):4597-605. PubMed ID: 25837869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A kinetic study on sesame cake protein hydrolysis by Alcalase.
    Demirhan E; Apar DK; Özbek B
    J Food Sci; 2011; 76(1):C64-7. PubMed ID: 21535655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolysis of proteins by immobilized-stabilized alcalase-glyoxyl agarose.
    Tardioli PW; Pedroche J; Giordano RL; Fernández-Lafuente R; Guisán JM
    Biotechnol Prog; 2003; 19(2):352-60. PubMed ID: 12675571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of the enzymatic hydrolysis of chicken meat using response surface methodology.
    Kurozawa LE; Park KJ; Hubinger MD
    J Food Sci; 2008 Jun; 73(5):C405-12. PubMed ID: 18576986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of chlorophyll and pheophorbide from Chlorella pyrenoidosa by supercritical fluid extraction: potential of protein resource.
    Miyazawa T; Higuchi O; Sasaki M; Ota M; Aida T; Takekoshi H; Inomata H; Miyazawa T
    Biosci Biotechnol Biochem; 2021 Jun; 85(7):1759-1762. PubMed ID: 34036301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of hydrolysate with antioxidative activity by enzymatic hydrolysis of extruded corn gluten.
    Zheng XQ; Li LT; Liu XL; Wang XJ; Lin J; Li D
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):763-70. PubMed ID: 16977469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aggregation properties of whey protein hydrolysates generated with Bacillus licheniformis proteinase activities.
    Spellman D; Kenny P; O'Cuinn G; FitzGerald RJ
    J Agric Food Chem; 2005 Feb; 53(4):1258-65. PubMed ID: 15713050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme-induced gelation of extensively hydrolyzed whey proteins by alcalase: comparison with the plastein reaction and characterization of interactions.
    Doucet D; Gauthier SF; Otter DE; Foegeding EA
    J Agric Food Chem; 2003 Sep; 51(20):6036-42. PubMed ID: 13129313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilisation of Chlorella vulgaris cell biomass for the production of enzymatic protein hydrolysates.
    Morris HJ; Almarales A; Carrillo O; Bermúdez RC
    Bioresour Technol; 2008 Nov; 99(16):7723-9. PubMed ID: 18359627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein hydrolysis by immobilized and stabilized trypsin.
    Marques D; Pessela BC; Betancor L; Monti R; Carrascosa AV; Rocha-Martin J; Guisán JM; Fernandez-Lorente G
    Biotechnol Prog; 2011; 27(3):677-83. PubMed ID: 21509952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Production of glycolic acid by the cells of Chlorella pyrenoidosa].
    Maksimova IV; Dal' ES
    Mikrobiologiia; 1975; 44(6):1057-63. PubMed ID: 2841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic characterisation of the immobilised Alcalase to hydrolyse egg white protein for potential allergenicity reduction.
    Yang A; Long C; Xia J; Tong P; Cheng Y; Wang Y; Chen H
    J Sci Food Agric; 2017 Jan; 97(1):199-206. PubMed ID: 26991331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.