BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

570 related articles for article (PubMed ID: 23117189)

  • 1. Hierarchical LiFePO4/C microspheres with high tap density assembled by nanosheets as cathode materials for high-performance Li-ion batteries.
    Wei W; Chen D; Wang R; Guo L
    Nanotechnology; 2012 Nov; 23(47):475401. PubMed ID: 23117189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries.
    Zhu Y; Xu Y; Liu Y; Luo C; Wang C
    Nanoscale; 2013 Jan; 5(2):780-7. PubMed ID: 23235803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LiFePO4 mesocrystals for lithium-ion batteries.
    Popovic J; Demir-Cakan R; Tornow J; Morcrette M; Su DS; Schlögl R; Antonietti M; Titirici MM
    Small; 2011 Apr; 7(8):1127-35. PubMed ID: 21449048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of micro-nano hierarchical structured LiFePO₄/C composite with both superior high-rate performance and high tap density.
    Wang M; Yang Y; Zhang Y
    Nanoscale; 2011 Oct; 3(10):4434-9. PubMed ID: 21935524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvothermal synthesis of monodisperse LiFePO4 micro hollow spheres as high performance cathode material for lithium ion batteries.
    Yang S; Hu M; Xi L; Ma R; Dong Y; Chung CY
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):8961-7. PubMed ID: 23981067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon-coated LiFePO4-porous carbon composites as cathode materials for lithium ion batteries.
    Ni H; Liu J; Fan LZ
    Nanoscale; 2013 Mar; 5(5):2164-8. PubMed ID: 23389625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced electrochemical properties of LiFePO4 by Mo-substitution and graphitic carbon-coating via a facile and fast microwave-assisted solid-state reaction.
    Li D; Huang Y; Sharma N; Chen Z; Jia D; Guo Z
    Phys Chem Chem Phys; 2012 Mar; 14(10):3634-9. PubMed ID: 22311165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotube-loaded electrospun LiFePO4/carbon composite nanofibers as stable and binder-free cathodes for rechargeable lithium-ion batteries.
    Toprakci O; Toprakci HA; Ji L; Xu G; Lin Z; Zhang X
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1273-80. PubMed ID: 22301674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on novel functional materials carboxymethyl cellulose lithium (CMC-Li) improve high-performance lithium-ion battery.
    Qiu L; Shao Z; Xiang P; Wang D; Zhou Z; Wang F; Wang W; Wang J
    Carbohydr Polym; 2014 Sep; 110():121-7. PubMed ID: 24906737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of LiFePO₄/C Cathode Materials via a Green Synthesis Route for Lithium-Ion Battery Applications.
    Liu R; Chen J; Li Z; Ding Q; An X; Pan Y; Zheng Z; Yang M; Fu D
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30424540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced graphene oxide modified Li2FeSiO4/C composite with enhanced electrochemical performance as cathode material for lithium ion batteries.
    Zhang LL; Duan S; Yang XL; Peng G; Liang G; Huang YH; Jiang Y; Ni SB; Li M
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12304-9. PubMed ID: 24195648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The facile synthesis of nickel silicide nanobelts and nanosheets and their application in electrochemical energy storage.
    Zhang HL; Li F; Liu C; Cheng HM
    Nanotechnology; 2008 Apr; 19(16):165606. PubMed ID: 21825650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable morphology synthesis of LiFePO4 nanoparticles as cathode materials for lithium ion batteries.
    Ma Z; Shao G; Fan Y; Wang G; Song J; Liu T
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9236-44. PubMed ID: 24892948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fe3O4/Fe/carbon composite and its application as anode material for lithium-ion batteries.
    Zhao X; Xia D; Zheng K
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1350-6. PubMed ID: 22301516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ carbon-coated yolk-shell V2O3 microspheres for lithium-ion batteries.
    Jiang L; Qu Y; Ren Z; Yu P; Zhao D; Zhou W; Wang L; Fu H
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1595-601. PubMed ID: 25569599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries.
    Ng SH; Tran N; Bramnik KG; Hibst H; Novák P
    Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uniform carbon layer coated Mn3O4 nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries.
    Wang C; Yin L; Xiang D; Qi Y
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1636-42. PubMed ID: 22394097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene wrapped ordered LiNi0.5Mn1.5O4 nanorods as promising cathode material for lithium-ion batteries.
    Tang X; Jan SS; Qian Y; Xia H; Ni J; Savilov SV; Aldoshin SM
    Sci Rep; 2015 Jul; 5():11958. PubMed ID: 26148558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvothermal Synthesis of a Hollow Micro-Sphere LiFePO₄/C Composite with a Porous Interior Structure as a Cathode Material for Lithium Ion Batteries.
    Liu Y; Zhang J; Li Y; Hu Y; Li W; Zhu M; Hu P; Chou S; Wang G
    Nanomaterials (Basel); 2017 Nov; 7(11):. PubMed ID: 29099814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of hierarchical three-dimensional vanadium oxide microstructures as high-capacity cathode materials for lithium-ion batteries.
    Pan A; Wu HB; Yu L; Zhu T; Lou XW
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3874-9. PubMed ID: 22809125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.