These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23117247)

  • 1. A low cost setup for behavioral audiometry in rodents.
    Tziridis K; Ahlf S; Schulze H
    J Vis Exp; 2012 Oct; (68):. PubMed ID: 23117247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Open(G)PIAS: An Open-Source Solution for the Construction of a High-Precision Acoustic Startle Response Setup for Tinnitus Screening and Threshold Estimation in Rodents.
    Gerum R; Rahlfs H; Streb M; Krauss P; Grimm J; Metzner C; Tziridis K; Günther M; Schulze H; Kellermann W; Schilling A
    Front Behav Neurosci; 2019; 13():140. PubMed ID: 31293403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prepulse inhibition of the acoustic startle reflex vs. auditory brainstem response for hearing assessment.
    Longenecker RJ; Alghamdi F; Rosen MJ; Galazyuk AV
    Hear Res; 2016 Sep; 339():80-93. PubMed ID: 27349914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Therapeutic Value of Ginkgo biloba Extract EGb 761® in an Animal Model (Meriones unguiculatus) for Noise Trauma Induced Hearing Loss and Tinnitus.
    Krauss P; Tziridis K; Buerbank S; Schilling A; Schulze H
    PLoS One; 2016; 11(6):e0157574. PubMed ID: 27315063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavioral Assessment of Zwicker Tone Percepts in Gerbils.
    Schilling A; Tziridis K; Schulze H; Krauss P
    Neuroscience; 2023 Jun; 520():39-45. PubMed ID: 37080446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prepulse inhibition of acoustic startle reflex as a function of the frequency difference between prepulse and background sounds in mice.
    Basavaraj S; Yan J
    PLoS One; 2012; 7(9):e45123. PubMed ID: 22984620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concurrent assessment of acoustic startle and auditory P50 evoked potential measures of sensory inhibition.
    Schwarzkopf SB; Lamberti JS; Smith DA
    Biol Psychiatry; 1993 Jun 1-15; 33(11-12):815-28. PubMed ID: 8373920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tinnitus development is associated with synaptopathy of inner hair cells in Mongolian gerbils.
    Tziridis K; Forster J; Buchheidt-Dörfler I; Krauss P; Schilling A; Wendler O; Sterna E; Schulze H
    Eur J Neurosci; 2021 Aug; 54(3):4768-4780. PubMed ID: 34061412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elevated Acoustic Startle Responses in Humans: Relationship to Reduced Loudness Discomfort Level, but not Self-Report of Hyperacusis.
    Knudson IM; Melcher JR
    J Assoc Res Otolaryngol; 2016 Jun; 17(3):223-35. PubMed ID: 26931342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting Psychoacoustic Methods for the Assessment of Fish Hearing.
    Bhandiwad AA; Sisneros JA
    Adv Exp Med Biol; 2016; 877():157-84. PubMed ID: 26515314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships between the acoustic startle response and prepulse inhibition in C57BL/6J mice: a large-scale meta-analytic study.
    Shoji H; Miyakawa T
    Mol Brain; 2018 Jul; 11(1):42. PubMed ID: 30001725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-frequency tone pips elicit exaggerated startle reflexes in C57BL/6J mice with hearing loss.
    Ison JR; Allen PD
    J Assoc Res Otolaryngol; 2003 Dec; 4(4):495-504. PubMed ID: 12784135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oto-acoustic emissions and brainstem evoked response audiometry in patients of tinnitus with normal hearing.
    Dadoo S; Sharma R; Sharma V
    Int Tinnitus J; 2019 Jan; 23(1):17-25. PubMed ID: 31469523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation in acoustic overstimulation changes tinnitus characteristics.
    Kiefer L; Schauen A; Abendroth S; Gaese BH; Nowotny M
    Neuroscience; 2015 Dec; 310():176-87. PubMed ID: 26365609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caudal pontine reticular formation of C57BL/6J mice: responses to startle stimuli, inhibition by tones, and plasticity.
    Carlson S; Willott JF
    J Neurophysiol; 1998 May; 79(5):2603-14. PubMed ID: 9582232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Animal models of tinnitus.
    Brozoski TJ; Bauer CA
    Hear Res; 2016 Aug; 338():88-97. PubMed ID: 26520585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related hearing loss in C57BL/6J mice has both frequency-specific and non-frequency-specific components that produce a hyperacusis-like exaggeration of the acoustic startle reflex.
    Ison JR; Allen PD; O'Neill WE
    J Assoc Res Otolaryngol; 2007 Dec; 8(4):539-50. PubMed ID: 17952509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic startle modification as a tool for evaluating auditory function of the mouse: Progress, pitfalls, and potential.
    Lauer AM; Behrens D; Klump G
    Neurosci Biobehav Rev; 2017 Jun; 77():194-208. PubMed ID: 28327385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavioral evidence for auditory induction in a species of rodent: Mongolian gerbil (Meriones unguiculatus).
    Kobayasi KI; Usami A; Riquimaroux H
    J Acoust Soc Am; 2012 Dec; 132(6):4063-8. PubMed ID: 23231135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The acoustic startle response in DBA/2 and C57BL/6 mice: relationship to auditory neuronal response properties and hearing impairment.
    Willott JF; Kulig J; Satterfield T
    Hear Res; 1984 Nov; 16(2):161-7. PubMed ID: 6526747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.