BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 23117407)

  • 1. A Bayesian normal mixture accelerated failure time spatial model and its application to prostate cancer.
    Wang S; Zhang J; Lawson AB
    Stat Methods Med Res; 2016 Apr; 25(2):793-806. PubMed ID: 23117407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian Parametric Accelerated Failure Time Spatial Model and its Application to Prostate Cancer.
    Zhang J; Lawson AB
    J Appl Stat; 2011 Mar; 38(2):591-603. PubMed ID: 21475617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial-temporal Bayesian accelerated failure time models for survival endpoints with applications to prostate cancer registry data.
    Wang M; Li Z; Lu J; Zhang L; Li Y; Zhang L
    BMC Med Res Methodol; 2024 Apr; 24(1):86. PubMed ID: 38589783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian accelerated failure time model for space-time dependency in a geographically augmented survival model.
    Onicescu G; Lawson A; Zhang J; Gebregziabher M; Wallace K; Eberth JM
    Stat Methods Med Res; 2017 Oct; 26(5):2244-2256. PubMed ID: 26220537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geospatial analysis, web-based mapping and determinants of prostate cancer incidence in Georgia counties: evidence from the 2012-2016 SEER data.
    Aheto JMK; Utuama OA; Dagne GA
    BMC Cancer; 2021 May; 21(1):508. PubMed ID: 33957887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prior choice in discrete latent modeling of spatially referenced cancer survival.
    Lawson AB; Choi J; Zhang J
    Stat Methods Med Res; 2014 Apr; 23(2):183-200. PubMed ID: 22556109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial extended hazard model with application to prostate cancer survival.
    Li L; Hanson T; Zhang J
    Biometrics; 2015 Jun; 71(2):313-22. PubMed ID: 25521422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatially-explicit survival modeling with discrete grouping of cancer predictors.
    Onicescu G; Lawson AB; Zhang J; Gebregziabher M; Wallace K; Eberth JM
    Spat Spatiotemporal Epidemiol; 2019 Jun; 29():139-148. PubMed ID: 31128623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized accelerated failure time spatial frailty model for arbitrarily censored data.
    Zhou H; Hanson T; Zhang J
    Lifetime Data Anal; 2017 Jul; 23(3):495-515. PubMed ID: 26993982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patient- and area-level predictors of prostate cancer among South Carolina veterans: a spatial analysis.
    Georgantopoulos P; Eberth JM; Cai B; Emrich C; Rao G; Bennett CL; Haddock KS; Hébert JR
    Cancer Causes Control; 2020 Mar; 31(3):209-220. PubMed ID: 31975155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disparities by Race, Age, and Sex in the Improvement of Survival for Major Cancers: Results From the National Cancer Institute Surveillance, Epidemiology, and End Results (SEER) Program in the United States, 1990 to 2010.
    Zeng C; Wen W; Morgans AK; Pao W; Shu XO; Zheng W
    JAMA Oncol; 2015 Apr; 1(1):88-96. PubMed ID: 26182310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geographical epidemiology of prostate cancer in Great Britain.
    Jarup L; Best N; Toledano MB; Wakefield J; Elliott P
    Int J Cancer; 2002 Feb; 97(5):695-9. PubMed ID: 11807800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Socioeconomic status and prostate cancer incidence and mortality rates among the diverse population of California.
    Cheng I; Witte JS; McClure LA; Shema SJ; Cockburn MG; John EM; Clarke CA
    Cancer Causes Control; 2009 Oct; 20(8):1431-40. PubMed ID: 19526319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian approach to cancer-trend analysis using age-stratified Poisson regression models.
    Ghosh P; Ghosh K; Tiwari RC
    Stat Med; 2011 Jan; 30(2):127-39. PubMed ID: 20839366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of conditional autoregressive models used in Bayesian disease mapping.
    Lee D
    Spat Spatiotemporal Epidemiol; 2011 Jun; 2(2):79-89. PubMed ID: 22749587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint spatial survival modeling for the age at diagnosis and the vital outcome of prostate cancer.
    Zhou H; Lawson AB; Hebert JR; Slate EH; Hill EG
    Stat Med; 2008 Aug; 27(18):3612-28. PubMed ID: 18416442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian variable selection in the accelerated failure time model with an application to the surveillance, epidemiology, and end results breast cancer data.
    Zhang Z; Sinha S; Maiti T; Shipp E
    Stat Methods Med Res; 2018 Apr; 27(4):971-990. PubMed ID: 28034170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial variation in prostate cancer survival in the Northern and Yorkshire region of England using Bayesian relative survival smoothing.
    Fairley L; Forman D; West R; Manda S
    Br J Cancer; 2008 Dec; 99(11):1786-93. PubMed ID: 18985045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial analysis of prostate cancer incidence and race in Virginia, 1990-1999.
    Oliver MN; Smith E; Siadaty M; Hauck FR; Pickle LW
    Am J Prev Med; 2006 Feb; 30(2 Suppl):S67-76. PubMed ID: 16458792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Bayesian approach to competing risks analysis with masked cause of death.
    Sen A; Banerjee M; Li Y; Noone AM
    Stat Med; 2010 Jul; 29(16):1681-95. PubMed ID: 20575048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.