These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Sroka Z; Cisowski W Food Chem Toxicol; 2003 Jun; 41(6):753-8. PubMed ID: 12738180 [TBL] [Abstract][Full Text] [Related]
3. DPPH-scavenging activities and structure-activity relationships of phenolic compounds. Zheng CD; Li G; Li HQ; Xu XJ; Gao JM; Zhang AL Nat Prod Commun; 2010 Nov; 5(11):1759-65. PubMed ID: 21213975 [TBL] [Abstract][Full Text] [Related]
4. Probing into the Molecular Requirements for Antioxidant Activity in Plant Phenolic Compounds Utilizing a Combined Strategy of PCA and ANN. Agatonovic-Kustrin S; Morton DW; Ristivojevic P Comb Chem High Throughput Screen; 2017; 20(1):25-34. PubMed ID: 28042773 [TBL] [Abstract][Full Text] [Related]
5. Quinone hemiacetal formation from protocatechuic acid during the DPPH radical scavenging reaction. Saito S; Okamoto Y; Kawabata J; Kasai T Biosci Biotechnol Biochem; 2003 Jul; 67(7):1578-9. PubMed ID: 12913304 [TBL] [Abstract][Full Text] [Related]
6. Predictive chemometric modeling of DPPH free radical-scavenging activity of azole derivatives using 2D- and 3D-quantitative structure-activity relationship tools. Mitra I; Saha A; Roy K Future Med Chem; 2013 Mar; 5(3):261-80. PubMed ID: 23464517 [TBL] [Abstract][Full Text] [Related]
7. Effect of processing on phenolic acids composition and radical scavenging capacity of barley pasta. De Paula R; Rabalski I; Messia MC; Abdel-Aal EM; Marconi E Food Res Int; 2017 Dec; 102():136-143. PubMed ID: 29195932 [TBL] [Abstract][Full Text] [Related]
8. Development of an in Silico Model of DPPH• Free Radical Scavenging Capacity: Prediction of Antioxidant Activity of Coumarin Type Compounds. Goya Jorge E; Rayar AM; Barigye SJ; Jorge Rodríguez ME; Sylla-Iyarreta Veitía M Int J Mol Sci; 2016 Jun; 17(6):. PubMed ID: 27338348 [TBL] [Abstract][Full Text] [Related]
9. Antioxidant ability and mechanism of rhizoma Atractylodes macrocephala. Li X; Lin J; Han W; Mai W; Wang L; Li Q; Lin M; Bai M; Zhang L; Chen D Molecules; 2012 Nov; 17(11):13457-72. PubMed ID: 23149564 [TBL] [Abstract][Full Text] [Related]
10. In vitro antioxidant activity of selected 4-hydroxy-chromene-2-one derivatives-SAR, QSAR and DFT studies. Mladenović M; Mihailović M; Bogojević D; Matić S; Nićiforović N; Mihailović V; Vuković N; Sukdolak S; Solujić S Int J Mol Sci; 2011; 12(5):2822-41. PubMed ID: 21686153 [TBL] [Abstract][Full Text] [Related]
11. Ligand-based CoMFA and CoMSIA studies on chromone derivatives as radical scavengers. Phosrithong N; Ungwitayatorn J Bioorg Chem; 2013 Aug; 49():9-15. PubMed ID: 23838011 [TBL] [Abstract][Full Text] [Related]
12. Antioxidant interactions between major phenolic compounds found in 'Ataulfo' mango pulp: chlorogenic, gallic, protocatechuic and vanillic acids. Palafox-Carlos H; Gil-Chávez J; Sotelo-Mundo RR; Namiesnik J; Gorinstein S; González-Aguilar GA Molecules; 2012 Oct; 17(11):12657-64. PubMed ID: 23103532 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and DPPH radical scavenging activity of prenylated phenol derivatives. Osorio M; Aravena J; Vergara A; Taborga L; Baeza E; Catalán K; González C; Carvajal M; Carrasco H; Espinoza L Molecules; 2012 Jan; 17(1):556-70. PubMed ID: 22269867 [TBL] [Abstract][Full Text] [Related]
14. Determination of free phenolic acids and antioxidant capacity of methanolic extracts obtained from leaves and flowers of camel thorn (Alhagi maurorum). Laghari AH; Ali Memon A; Memon S; Nelofar A; Khan KM; Yasmin A Nat Prod Res; 2012; 26(2):173-6. PubMed ID: 21834635 [TBL] [Abstract][Full Text] [Related]
15. Mechanism change in estimating of antioxidant activity of phenolic compounds. Dawidowicz AL; Olszowy M Talanta; 2012 Aug; 97():312-7. PubMed ID: 22841085 [TBL] [Abstract][Full Text] [Related]
16. Effects of structure on radical-scavenging abilities and antioxidative activities of tea polyphenols: NMR analytical approach using 1,1-diphenyl-2-picrylhydrazyl radicals. Sawai Y; Moon JH; Sakata K; Watanabe N J Agric Food Chem; 2005 May; 53(9):3598-604. PubMed ID: 15853407 [TBL] [Abstract][Full Text] [Related]
17. Non-reductive scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) by peroxyradical: a useful method for quantitative analysis of peroxyradical. Nishizawa M; Kohno M; Nishimura M; Kitagawa A; Niwano Y Chem Pharm Bull (Tokyo); 2005 Jun; 53(6):714-6. PubMed ID: 15930791 [TBL] [Abstract][Full Text] [Related]
18. A ¹H NMR Investigation of the Interaction between Phenolic Acids Found in Mango (Manguifera indica cv Ataulfo) and Papaya (Carica papaya cv Maradol) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) Free Radicals. López-Martínez LM; Santacruz-Ortega H; Navarro RE; Sotelo-Mundo RR; González-Aguilar GA PLoS One; 2015; 10(11):e0140242. PubMed ID: 26559189 [TBL] [Abstract][Full Text] [Related]
19. Quantitative studies on structure-ORAC relationships of anthocyanins from eggplant and radish using 3D-QSAR. Jing P; Zhao S; Ruan S; Sui Z; Chen L; Jiang L; Qian B Food Chem; 2014 Feb; 145():365-71. PubMed ID: 24128490 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and in vitro antioxidant activity evaluation of 3-carboxycoumarin derivatives and QSAR study of their DPPH• radical scavenging activity. Martínez-Martínez FJ; Razo-Hernández RS; Peraza-Campos AL; Villanueva-García M; Sumaya-Martínez MT; Cano DJ; Gómez-Sandoval Z Molecules; 2012 Dec; 17(12):14882-98. PubMed ID: 23519260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]