These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 23117576)

  • 1. Flow focusing geometry generates droplets through a plug and squeeze mechanism.
    Romero PA; Abate AR
    Lab Chip; 2012 Dec; 12(24):5130-2. PubMed ID: 23117576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental validation of plugging during drop formation in a T-junction.
    Abate AR; Mary P; van Steijn V; Weitz DA
    Lab Chip; 2012 Apr; 12(8):1516-21. PubMed ID: 22402628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Faster multiple emulsification with drop splitting.
    Abate AR; Weitz DA
    Lab Chip; 2011 Jun; 11(11):1911-5. PubMed ID: 21505660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of composite emulsions and complex foams with the use of microfluidic flow-focusing devices.
    Hashimoto M; Garstecki P; Whitesides GM
    Small; 2007 Oct; 3(10):1792-802. PubMed ID: 17890646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled generation of submicron emulsion droplets via highly stable tip-streaming mode in microfluidic devices.
    Jeong WC; Lim JM; Choi JH; Kim JH; Lee YJ; Kim SH; Lee G; Kim JD; Yi GR; Yang SM
    Lab Chip; 2012 Apr; 12(8):1446-53. PubMed ID: 22402819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microdroplet-based shift register.
    Zagnoni M; Cooper JM
    Lab Chip; 2010 Nov; 10(22):3069-73. PubMed ID: 20856984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of bubbles and droplets in parallel, coupled flow-focusing geometries.
    Hashimoto M; Shevkoplyas SS; Zasońska B; Szymborski T; Garstecki P; Whitesides GM
    Small; 2008 Oct; 4(10):1795-805. PubMed ID: 18819139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-in-Water Droplets by Passive Microfluidic Flow Focusing.
    Moon BU; Abbasi N; Jones SG; Hwang DK; Tsai SS
    Anal Chem; 2016 Apr; 88(7):3982-9. PubMed ID: 26959358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic flow focusing: drop size and scaling in pressure versus flow-rate-driven pumping.
    Ward T; Faivre M; Abkarian M; Stone HA
    Electrophoresis; 2005 Oct; 26(19):3716-24. PubMed ID: 16196106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic stickers.
    Bartolo D; Degré G; Nghe P; Studer V
    Lab Chip; 2008 Feb; 8(2):274-9. PubMed ID: 18231666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear-driven redistribution of surfactant affects enzyme activity in well-mixed femtoliter droplets.
    Liu Y; Jung SY; Collier CP
    Anal Chem; 2009 Jun; 81(12):4922-8. PubMed ID: 19441820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of inlet channel geometry on microfluidic drop formation.
    Abate AR; Poitzsch A; Hwang Y; Lee J; Czerwinska J; Weitz DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026310. PubMed ID: 19792252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An inertia enhanced passive pumping mechanism for fluid flow in microfluidic devices.
    Resto PJ; Berthier E; Beebe DJ; Williams JC
    Lab Chip; 2012 Jun; 12(12):2221-8. PubMed ID: 22441561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple-channel emulsion chips utilizing pneumatic choppers for biotechnology applications.
    Lin YH; Chen CT; Huang LL; Lee GB
    Biomed Microdevices; 2007 Dec; 9(6):833-43. PubMed ID: 17577672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple, robust storage of drops and fluids in a microfluidic device.
    Boukellal H; Selimović S; Jia Y; Cristobal G; Fraden S
    Lab Chip; 2009 Jan; 9(2):331-8. PubMed ID: 19107293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties.
    Xu JH; Luo GS; Li SW; Chen GG
    Lab Chip; 2006 Jan; 6(1):131-6. PubMed ID: 16372080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling flow in microfluidic channels with a manually actuated pin valve.
    Brett ME; Zhao S; Stoia JL; Eddington DT
    Biomed Microdevices; 2011 Aug; 13(4):633-9. PubMed ID: 21472409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The microfluidic puzzle: chip-oriented rapid prototyping.
    Lim J; Maes F; Taly V; Baret JC
    Lab Chip; 2014 May; 14(10):1669-72. PubMed ID: 24658639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The deformation of flexible PDMS microchannels under a pressure driven flow.
    Hardy BS; Uechi K; Zhen J; Pirouz Kavehpour H
    Lab Chip; 2009 Apr; 9(7):935-8. PubMed ID: 19294304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.