These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 23117600)
1. A microfluidic-based bubble generation platform enables analysis of physical property change in phospholipid surfactant layers by interfacial ozone reaction. Shin YS; Choi TS; Kim H; Beauchamp JL; Heath JR; Kim HI Lab Chip; 2012 Dec; 12(24):5243-8. PubMed ID: 23117600 [TBL] [Abstract][Full Text] [Related]
2. Time resolved studies of interfacial reactions of ozone with pulmonary phospholipid surfactants using field induced droplet ionization mass spectrometry. Kim HI; Kim H; Shin YS; Beegle LW; Goddard WA; Heath JR; Kanik I; Beauchamp JL J Phys Chem B; 2010 Jul; 114(29):9496-503. PubMed ID: 20608690 [TBL] [Abstract][Full Text] [Related]
3. Effect of pulmonary surfactant protein B (SP-B) and calcium on phospholipid adsorption and squeeze-out of phosphatidylglycerol from binary phospholipid monolayers containing dipalmitoylphosphatidylcholine. Yu SH; Possmayer F Biochim Biophys Acta; 1992 Jun; 1126(1):26-34. PubMed ID: 1606172 [TBL] [Abstract][Full Text] [Related]
4. Degradation and rearrangement of a lung surfactant lipid at the air-water interface during exposure to the pollutant gas ozone. Thompson KC; Jones SH; Rennie AR; King MD; Ward AD; Hughes BR; Lucas CO; Campbell RA; Hughes AV Langmuir; 2013 Apr; 29(14):4594-602. PubMed ID: 23480170 [TBL] [Abstract][Full Text] [Related]
5. Studying interfacial reactions of cholesterol sulfate in an unsaturated phosphatidylglycerol layer with ozone using field induced droplet ionization mass spectrometry. Ko JY; Choi SM; Rhee YM; Beauchamp JL; Kim HI J Am Soc Mass Spectrom; 2012 Jan; 23(1):141-52. PubMed ID: 22069038 [TBL] [Abstract][Full Text] [Related]
6. Pulmonary surfactant protein SP-C counteracts the deleterious effects of cholesterol on the activity of surfactant films under physiologically relevant compression-expansion dynamics. Gómez-Gil L; Schürch D; Goormaghtigh E; Pérez-Gil J Biophys J; 2009 Nov; 97(10):2736-45. PubMed ID: 19917227 [TBL] [Abstract][Full Text] [Related]
7. Non-linear van't Hoff behavior in pulmonary surfactant model membranes. Vieira ED; Basso LG; Costa-Filho AJ Biochim Biophys Acta Biomembr; 2017 Jun; 1859(6):1133-1143. PubMed ID: 28336314 [TBL] [Abstract][Full Text] [Related]
8. A direct test of the "squeeze-out" hypothesis of lung surfactant function. External reflection FT-IR at the air/water interface. Pastrana-Rios B; Flach CR; Brauner JW; Mautone AJ; Mendelsohn R Biochemistry; 1994 May; 33(17):5121-7. PubMed ID: 8172887 [TBL] [Abstract][Full Text] [Related]
9. Interfacial adsorption of simple lipid mixtures combined with hydrophobic surfactant protein from pig lung. Pérez-Gil J; Tucker J; Simatos G; Keough KM Biochem Cell Biol; 1992 May; 70(5):332-8. PubMed ID: 1497860 [TBL] [Abstract][Full Text] [Related]
10. SP-B refining of pulmonary surfactant phospholipid films. Nag K; Munro JG; Inchley K; Schürch S; Petersen NO; Possmayer F Am J Physiol; 1999 Dec; 277(6):L1179-89. PubMed ID: 10600889 [TBL] [Abstract][Full Text] [Related]
11. Real-time investigation of lung surfactant respreading with surface vibrational spectroscopy. Ma G; Allen HC Langmuir; 2006 Dec; 22(26):11267-74. PubMed ID: 17154614 [TBL] [Abstract][Full Text] [Related]
12. Reaction of a phospholipid monolayer with gas-phase ozone at the air-water interface: measurement of surface excess and surface pressure in real time. Thompson KC; Rennie AR; King MD; Hardman SJ; Lucas CO; Pfrang C; Hughes BR; Hughes AV Langmuir; 2010 Nov; 26(22):17295-303. PubMed ID: 20883049 [TBL] [Abstract][Full Text] [Related]
13. Pulmonary lung surfactant synthetic peptide concentration-dependent modulation of DPPC and POPG acyl chain order in a DPPC:POPG:palmitic acid lipid mixture. Krill SL; Gupta SL; Smith T Chem Phys Lipids; 1994 May; 71(1):47-59. PubMed ID: 8039257 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the in situ structural and interfacial properties of the cationic hydrophobic heteropolypeptide, KL4, in lung surfactant bilayer and monolayer models at the air-water interface: implications for pulmonary surfactant delivery. Mansour HM; Damodaran S; Zografi G Mol Pharm; 2008; 5(5):681-95. PubMed ID: 18630875 [TBL] [Abstract][Full Text] [Related]
15. New insights into lung surfactant monolayers using vibrational sum frequency generation spectroscopy. Ma G; Allen HC Photochem Photobiol; 2006; 82(6):1517-29. PubMed ID: 16930094 [TBL] [Abstract][Full Text] [Related]
16. Distinct steps in the adsorption of pulmonary surfactant to an air-liquid interface. Walters RW; Jenq RR; Hall SB Biophys J; 2000 Jan; 78(1):257-66. PubMed ID: 10620290 [TBL] [Abstract][Full Text] [Related]
17. Lipid compositional analysis of pulmonary surfactant monolayers and monolayer-associated reservoirs. Yu SH; Possmayer F J Lipid Res; 2003 Mar; 44(3):621-9. PubMed ID: 12562850 [TBL] [Abstract][Full Text] [Related]
18. Mode of interaction of hydrophobic amphiphilic alpha-helical peptide/dipalmitoylphosphatidylcholine with phosphatidylglycerol or palmitic acid at the air-water interface. Nakahara H; Lee S; Sugihara G; Shibata O Langmuir; 2006 Jun; 22(13):5792-803. PubMed ID: 16768510 [TBL] [Abstract][Full Text] [Related]
19. Effect of D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) on surfactant monolayers. Shah AR; Banerjee R Colloids Surf B Biointerfaces; 2011 Jul; 85(2):116-24. PubMed ID: 21398100 [TBL] [Abstract][Full Text] [Related]
20. Role of bovine pulmonary surfactant-associated proteins in the surface-active property of phospholipid mixtures. Yu SH; Possmayer F Biochim Biophys Acta; 1990 Oct; 1046(3):233-41. PubMed ID: 2223863 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]