These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 23117804)

  • 1. Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform.
    Chitchian S; Mayer MA; Boretsky AR; van Kuijk FJ; Motamedi M
    J Biomed Opt; 2012 Nov; 17(11):116009. PubMed ID: 23117804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Denoising during optical coherence tomography of the prostate nerves via wavelet shrinkage using dual-tree complex wavelet transform.
    Chitchian S; Fiddy MA; Fried NM
    J Biomed Opt; 2009; 14(1):014031. PubMed ID: 19256719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavelet denoising during optical coherence tomography of the prostate nerves using the complex wavelet transform.
    Chitchian S; Fiddy M; Fried NM
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3016-9. PubMed ID: 19163341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter.
    Adler DC; Ko TH; Fujimoto JG
    Opt Lett; 2004 Dec; 29(24):2878-80. PubMed ID: 15645810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speckle reduction in optical coherence tomography images based on wave atoms.
    Du Y; Liu G; Feng G; Chen Z
    J Biomed Opt; 2014 May; 19(5):056009. PubMed ID: 24825507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speckle reduction of retinal optical coherence tomography based on contourlet shrinkage.
    Xu J; Ou H; Lam EY; Chui PC; Wong KK
    Opt Lett; 2013 Aug; 38(15):2900-3. PubMed ID: 23903174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive compounding speckle-noise-reduction filter for optical coherence tomography images.
    Gómez-Valverde JJ; Sinz C; Rank EA; Chen Z; Santos A; Drexler W; Ledesma-Carbayo MJ
    J Biomed Opt; 2021 Jun; 26(6):. PubMed ID: 34142472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined image-processing algorithms for improved optical coherence tomography of prostate nerves.
    Chitchian S; Weldon TP; Fiddy MA; Fried NM
    J Biomed Opt; 2010; 15(4):046014. PubMed ID: 20799816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speckle reduction in optical coherence tomography by two-step image registration.
    Zhang H; Li Z; Wang X; Zhang X
    J Biomed Opt; 2015 Mar; 20(3):036013. PubMed ID: 25793561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive-weighted bilateral filtering and other pre-processing techniques for optical coherence tomography.
    Anantrasirichai N; Nicholson L; Morgan JE; Erchova I; Mortlock K; North RV; Albon J; Achim A
    Comput Med Imaging Graph; 2014 Sep; 38(6):526-39. PubMed ID: 25034317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometrical X-lets for Image Denoising.
    Khodabandeh Z; Rabbani H; Mehri A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2691-2694. PubMed ID: 31946450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases.
    Sakamoto A; Hangai M; Yoshimura N
    Ophthalmology; 2008 Jun; 115(6):1071-1078.e7. PubMed ID: 18061270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New variational image decomposition model for simultaneously denoising and segmenting optical coherence tomography images.
    Duan J; Tench C; Gottlob I; Proudlock F; Bai L
    Phys Med Biol; 2015 Nov; 60(22):8901-22. PubMed ID: 26553577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spiking cortical model-based nonlocal means method for speckle reduction in optical coherence tomography images.
    Zhang X; Li L; Zhu F; Hou W; Chen X
    J Biomed Opt; 2014 Jun; 19(6):066005. PubMed ID: 24919448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast acquisition and reconstruction of optical coherence tomography images via sparse representation.
    Fang L; Li S; McNabb RP; Nie Q; Kuo AN; Toth CA; Izatt JA; Farsiu S
    IEEE Trans Med Imaging; 2013 Nov; 32(11):2034-49. PubMed ID: 23846467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery.
    Wong A; Mishra A; Bizheva K; Clausi DA
    Opt Express; 2010 Apr; 18(8):8338-52. PubMed ID: 20588679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelet domain compounding for speckle reduction in optical coherence tomography.
    Xu J; Ou H; Sun C; Chui PC; Yang VX; Lam EY; Wong KK
    J Biomed Opt; 2013 Sep; 18(9):096002. PubMed ID: 24002189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speckle noise reduction in ultrasound images using a discrete wavelet transform-based image fusion technique.
    Choi HH; Lee JH; Kim SM; Park SY
    Biomed Mater Eng; 2015; 26 Suppl 1():S1587-97. PubMed ID: 26405924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Denoising of PET images by combining wavelets and curvelets for improved preservation of resolution and quantitation.
    Le Pogam A; Hanzouli H; Hatt M; Cheze Le Rest C; Visvikis D
    Med Image Anal; 2013 Dec; 17(8):877-91. PubMed ID: 23837964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speckle reduction in optical coherence tomography imaging by affine-motion image registration.
    Alonso-Caneiro D; Read SA; Collins MJ
    J Biomed Opt; 2011 Nov; 16(11):116027. PubMed ID: 22112132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.