BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 23117807)

  • 1. Recognizing different tissues in human fetal femur cartilage by label-free Raman microspectroscopy.
    Kunstar A; Leijten J; van Leuveren S; Hilderink J; Otto C; van Blitterswijk CA; Karperien M; van Apeldoorn AA
    J Biomed Opt; 2012 Nov; 17(11):116012. PubMed ID: 23117807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-invasive identification of proteoglycans and chondrocyte differentiation state by Raman microspectroscopy.
    Pudlas M; Brauchle E; Klein TJ; Hutmacher DW; Schenke-Layland K
    J Biophotonics; 2013 Feb; 6(2):205-11. PubMed ID: 22678997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Online quantitative monitoring of live cell engineered cartilage growth using diffuse fiber-optic Raman spectroscopy.
    Bergholt MS; Albro MB; Stevens MM
    Biomaterials; 2017 Sep; 140():128-137. PubMed ID: 28649013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical imaging of articular cartilage sections with Raman mapping, employing uni- and multi-variate methods for data analysis.
    Bonifacio A; Beleites C; Vittur F; Marsich E; Semeraro S; Paoletti S; Sergo V
    Analyst; 2010 Dec; 135(12):3193-204. PubMed ID: 20967391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cartilaginous extracellular matrix derived from decellularized chondrocyte sheets for the reconstruction of osteochondral defects in rabbits.
    Wang Z; Li Z; Li Z; Wu B; Liu Y; Wu W
    Acta Biomater; 2018 Nov; 81():129-145. PubMed ID: 30300711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histologic study of the femoral growth plate in beagle dogs.
    Yamasaki K
    Toxicol Pathol; 1995; 23(5):612-6. PubMed ID: 8578104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman spectroscopy as a tool for quality and sterility analysis for tissue engineering applications like cartilage transplants.
    Pudlas M; Koch S; Bolwien C; Walles H
    Int J Artif Organs; 2010 Apr; 33(4):228-37. PubMed ID: 20458692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chondrogenic properties of collagen type XI, a component of cartilage extracellular matrix.
    Li A; Wei Y; Hung C; Vunjak-Novakovic G
    Biomaterials; 2018 Aug; 173():47-57. PubMed ID: 29758546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemically specific imaging and in-situ chemical analysis of articular cartilage with stimulated Raman scattering.
    Mansfield J; Moger J; Green E; Moger C; Winlove CP
    J Biophotonics; 2013 Oct; 6(10):803-14. PubMed ID: 23303610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunohistochemical localization of fibroblast growth factor-2 in normal and brachymorphic mouse tibial growth plate and articular cartilage.
    Wezeman FH; Bollnow MR
    Histochem J; 1997 Jun; 29(6):505-14. PubMed ID: 9248858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single cell confocal Raman spectroscopy of human osteoarthritic chondrocytes: a preliminary study.
    Kumar R; Singh GP; Grønhaug KM; Afseth NK; de Lange Davies C; Drogset JO; Lilledahl MB
    Int J Mol Sci; 2015 Apr; 16(5):9341-53. PubMed ID: 25918938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of mutations of cartilage matrix genes on matrix structure, gene activity and chondrogenesis.
    So CL; Kaluarachchi K; Tam PP; Cheah KS
    Osteoarthritis Cartilage; 2001; 9 Suppl A():S160-73. PubMed ID: 11680681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman microspectroscopy: a noninvasive analysis tool for monitoring of collagen-containing extracellular matrix formation in a medium-throughput culture system.
    Kunstar A; Otto C; Karperien M; van Blitterswijk C; van Apeldoorn A
    Tissue Eng Part C Methods; 2011 Jul; 17(7):737-44. PubMed ID: 21410304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-contact, label-free monitoring of cells and extracellular matrix using Raman spectroscopy.
    Votteler M; Carvajal Berrio DA; Pudlas M; Walles H; Schenke-Layland K
    J Vis Exp; 2012 May; (63):. PubMed ID: 22688496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in submicroscopic structure of the extracellular matrix of canine femoral and tibial condylar articular cartilages as revealed by polarization microscopical analysis.
    Módis L; Botos A; Kiviranta I; Lukácskó L; Helminen HJ
    Acta Biol Hung; 1996; 47(1-4):341-53. PubMed ID: 9124004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microarray approach for comparative expression profiling of the discrete maturation zones of mouse growth plate cartilage.
    Belluoccio D; Bernardo BC; Rowley L; Bateman JF
    Biochim Biophys Acta; 2008 May; 1779(5):330-40. PubMed ID: 18374667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging live cells grown on a three dimensional collagen matrix using Raman microspectroscopy.
    Bonnier F; Knief P; Lim B; Meade AD; Dorney J; Bhattacharya K; Lyng FM; Byrne HJ
    Analyst; 2010 Dec; 135(12):3169-77. PubMed ID: 20941442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel two-step method for the formation of tissue-engineered cartilage by mature bovine chondrocytes: the alginate-recovered-chondrocyte (ARC) method.
    Masuda K; Sah RL; Hejna MJ; Thonar EJ
    J Orthop Res; 2003 Jan; 21(1):139-48. PubMed ID: 12507591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrational spectroscopic monitoring and biochemical analysis of pericellular matrix formation and maturation in a 3-dimensional chondrocyte culture model.
    Owida HA; Rutter AV; Cinque G; Kuiper NJ; Sulé-Suso J; Yang Y
    Analyst; 2018 Dec; 143(24):5979-5986. PubMed ID: 30310903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fiber-optic Raman spectroscopy of joint tissues.
    Esmonde-White KA; Esmonde-White FW; Morris MD; Roessler BJ
    Analyst; 2011 Apr; 136(8):1675-85. PubMed ID: 21359366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.