These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 23117928)
1. Polydopamine spheres as active templates for convenient synthesis of various nanostructures. Yan J; Yang L; Lin MF; Ma J; Lu X; Lee PS Small; 2013 Feb; 9(4):596-603. PubMed ID: 23117928 [TBL] [Abstract][Full Text] [Related]
2. A facile method to synthesize mussel-inspired polydopamine nanospheres as an active template for in situ formation of biomimetic hydroxyapatite. Ghorbani F; Zamanian A; Behnamghader A; Joupari MD Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():729-739. PubMed ID: 30423759 [TBL] [Abstract][Full Text] [Related]
3. Mussel-inspired polydopamine coated hollow carbon microspheres, a novel versatile filler for fabrication of high performance syntactic foams. Zhang L; Roy S; Chen Y; Chua EK; See KY; Hu X; Liu M ACS Appl Mater Interfaces; 2014; 6(21):18644-52. PubMed ID: 25286083 [TBL] [Abstract][Full Text] [Related]
4. Preparation of colloidal polydopamine/Au hollow spheres for enhanced ultrasound contrast imaging and photothermal therapy. Shang B; Zhang X; Ji R; Wang Y; Hu H; Peng B; Deng Z Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110174. PubMed ID: 31753389 [TBL] [Abstract][Full Text] [Related]
5. Formation of polydopamine nanofibers with the aid of folic acid. Yu X; Fan H; Wang L; Jin Z Angew Chem Int Ed Engl; 2014 Nov; 53(46):12600-4. PubMed ID: 25146565 [TBL] [Abstract][Full Text] [Related]
6. Mussel-Inspired Photografting on Colloidal Spheres: A Generalized Self-Template Route to Stimuli-Responsive Hollow Spheres for Controlled Pesticide Release. Sheng W; Li W; Li B; Li C; Xu Y; Guo X; Zhou F; Jia X Macromol Rapid Commun; 2015 Sep; 36(18):1640-5. PubMed ID: 26178587 [TBL] [Abstract][Full Text] [Related]
7. Facile template-free fabrication of hollow nestlike α-Fe₂O₃ nanostructures for water treatment. Wei Z; Xing R; Zhang X; Liu S; Yu H; Li P ACS Appl Mater Interfaces; 2013 Feb; 5(3):598-604. PubMed ID: 23131138 [TBL] [Abstract][Full Text] [Related]
8. Surface and tribological behaviors of the bioinspired polydopamine thin films under dry and wet conditions. Zhang W; Yang FK; Han Y; Gaikwad R; Leonenko Z; Zhao B Biomacromolecules; 2013 Feb; 14(2):394-405. PubMed ID: 23311532 [TBL] [Abstract][Full Text] [Related]
9. Core-shell Fe3O4 polydopamine nanoparticles serve multipurpose as drug carrier, catalyst support and carbon adsorbent. Liu R; Guo Y; Odusote G; Qu F; Priestley RD ACS Appl Mater Interfaces; 2013 Sep; 5(18):9167-71. PubMed ID: 24010676 [TBL] [Abstract][Full Text] [Related]
10. A Facile Multi-interface Transformation Approach to Monodisperse Multiple-Shelled Periodic Mesoporous Organosilica Hollow Spheres. Teng Z; Su X; Zheng Y; Zhang J; Liu Y; Wang S; Wu J; Chen G; Wang J; Zhao D; Lu G J Am Chem Soc; 2015 Jun; 137(24):7935-44. PubMed ID: 26030506 [TBL] [Abstract][Full Text] [Related]
11. Integration of inorganic nanostructures with polydopamine-derived carbon: tunable morphologies and versatile applications. Kong J; Seyed Shahabadi SI; Lu X Nanoscale; 2016 Jan; 8(4):1770-88. PubMed ID: 26750427 [TBL] [Abstract][Full Text] [Related]
12. Green aqueous surface modification of polypropylene for novel polymer nanocomposites. Thakur VK; Vennerberg D; Kessler MR ACS Appl Mater Interfaces; 2014 Jun; 6(12):9349-56. PubMed ID: 24841134 [TBL] [Abstract][Full Text] [Related]
13. Hydrophilic polydopamine-coated magnetic graphene nanocomposites for highly efficient tryptic immobilization. Shi C; Deng C; Li Y; Zhang X; Yang P Proteomics; 2014 Jun; 14(12):1457-63. PubMed ID: 24723515 [TBL] [Abstract][Full Text] [Related]
14. Regioselectively controlled synthesis of colloidal mushroom nanostructures and their hollow derivatives. Feyen M; Weidenthaler C; Schüth F; Lu AH J Am Chem Soc; 2010 May; 132(19):6791-9. PubMed ID: 20420374 [TBL] [Abstract][Full Text] [Related]
15. Sonochemically-Produced Metal-Containing Polydopamine Nanoparticles and Their Antibacterial and Antibiofilm Activity. Yeroslavsky G; Lavi R; Alishaev A; Rahimipour S Langmuir; 2016 May; 32(20):5201-12. PubMed ID: 27133213 [TBL] [Abstract][Full Text] [Related]
16. In Situ Synthesis of Catalytic Active Au Nanoparticles onto Gibbsite-Polydopamine Core-Shell Nanoplates. Cao J; Mei S; Jia H; Ott A; Ballauff M; Lu Y Langmuir; 2015 Sep; 31(34):9483-91. PubMed ID: 26266398 [TBL] [Abstract][Full Text] [Related]
17. Magnetically separable and recyclable Fe3O4-polydopamine hybrid hollow microsphere for highly efficient peroxidase mimetic catalysts. Liu S; Fu J; Wang M; Yan Y; Xin Q; Cai L; Xu Q J Colloid Interface Sci; 2016 May; 469():69-77. PubMed ID: 26871276 [TBL] [Abstract][Full Text] [Related]
18. Monodisperse core-shell structured up-conversion Yb(OH)CO₃@YbPO₄:Er³+ hollow spheres as drug carriers. Xu Z; Ma P; Li C; Hou Z; Zhai X; Huang S; Lin J Biomaterials; 2011 Jun; 32(17):4161-73. PubMed ID: 21435712 [TBL] [Abstract][Full Text] [Related]
19. Bio-inspired strategy for on-surface synthesis of silver nanoparticles for metal/organic hybrid nanomaterials and LDI-MS substrates. Hong S; Lee JS; Ryu J; Lee SH; Lee DY; Kim DP; Park CB; Lee H Nanotechnology; 2011 Dec; 22(49):494020. PubMed ID: 22101139 [TBL] [Abstract][Full Text] [Related]
20. Characterization of carbonized polydopamine nanoparticles suggests ordered supramolecular structure of polydopamine. Yu X; Fan H; Liu Y; Shi Z; Jin Z Langmuir; 2014 May; 30(19):5497-505. PubMed ID: 24773501 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]