These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23118512)

  • 21. Autotrophic biosynthesis of polyhydroxyalkanoate by Ralstonia eutropha from non-combustible gas mixture with low hydrogen content.
    Miyahara Y; Yamamoto M; Thorbecke R; Mizuno S; Tsuge T
    Biotechnol Lett; 2020 Sep; 42(9):1655-1662. PubMed ID: 32240453
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High cell density culture of Cupriavidus necator H16 and improved biological recovery of polyhydroxyalkanoates using mealworms.
    Zainab-L I; Sudesh K
    J Biotechnol; 2019 Nov; 305():35-42. PubMed ID: 31493421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polyhydroxyalkanoates production from effluent of hydrogen fermentation process by Cupriavidus sp. KKU38.
    Saraphirom P; Reungsang A; Plangklang P
    Environ Technol; 2013; 34(1-4):477-83. PubMed ID: 23530362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic carbon fluxes and biosynthesis of polyhydroxyalkanoates in Ralstonia eutropha on short chain fatty acids.
    Yu J; Si Y
    Biotechnol Prog; 2004; 20(4):1015-24. PubMed ID: 15296425
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of polyhydroxyalkanoic acids by Ralstonia eutropha and Pseudomonas oleovorans from an oil remaining from biotechnological rhamnose production.
    Füchtenbusch B; Wullbrandt D; Steinbüchel A
    Appl Microbiol Biotechnol; 2000 Feb; 53(2):167-72. PubMed ID: 10709978
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Feasibility study on the utilization of rubber latex effluent for producing bacterial biopolymers.
    Tang SN; Fakhru'l-Razi A; Hassan MA; Karim MI
    Artif Cells Blood Substit Immobil Biotechnol; 1999; 27(5-6):411-6. PubMed ID: 10595441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering of polyhydroxyalkanoate (PHA) synthase PhaC2Ps of Pseudomonas stutzeri via site-specific mutation for efficient production of PHA copolymers.
    Shen XW; Shi ZY; Song G; Li ZJ; Chen GQ
    Appl Microbiol Biotechnol; 2011 Aug; 91(3):655-65. PubMed ID: 21509565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbon flux to growth or polyhydroxyalkanoate synthesis under microaerophilic conditions is affected by fatty acid chain-length in Pseudomonas putida LS46.
    Blunt W; Dartiailh C; Sparling R; Gapes D; Levin DB; Cicek N
    Appl Microbiol Biotechnol; 2018 Aug; 102(15):6437-6449. PubMed ID: 29799090
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mathematical modeling of poly[(R)-3-hydroxyalkanoate] synthesis by Cupriavidus necator DSM 545 on substrates stemming from biodiesel production.
    Špoljarić IV; Lopar M; Koller M; Muhr A; Salerno A; Reiterer A; Malli K; Angerer H; Strohmeier K; Schober S; Mittelbach M; Horvat P
    Bioresour Technol; 2013 Apr; 133():482-94. PubMed ID: 23454805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha from soybean oil.
    Park DH; Kim BS
    N Biotechnol; 2011 Oct; 28(6):719-24. PubMed ID: 21333767
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Untargeted metabolomics analysis of Ralstonia eutropha during plant oil cultivations reveals the presence of a fucose salvage pathway.
    Gutschmann B; Bock MCE; Jahns S; Neubauer P; Brigham CJ; Riedel SL
    Sci Rep; 2021 Jul; 11(1):14267. PubMed ID: 34253787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-scale reconstruction and in silico analysis of the Ralstonia eutropha H16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production.
    Park JM; Kim TY; Lee SY
    BMC Syst Biol; 2011 Jun; 5():101. PubMed ID: 21711532
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic and stoichiometric characterization of organoautotrophic growth of Ralstonia eutropha on formic acid in fed-batch and continuous cultures.
    Grunwald S; Mottet A; Grousseau E; Plassmeier JK; Popović MK; Uribelarrea JL; Gorret N; Guillouet SE; Sinskey A
    Microb Biotechnol; 2015 Jan; 8(1):155-63. PubMed ID: 25123319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization of polyhydroxyalkanoate production in Halomonas sp. YLGW01 using mixed volatile fatty acids: a study on mixture analysis and fed-batch strategy.
    Park Y; Jeon JM; Park JK; Yang YH; Choi SS; Yoon JJ
    Microb Cell Fact; 2023 Sep; 22(1):171. PubMed ID: 37661274
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of carbon source supplementation on the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator.
    Fereidouni M; Younesi H; Daneshi A; Sharifzadeh M
    Biotechnol Appl Biochem; 2011 May; 58(3):203-11. PubMed ID: 21679245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polyhydroxyalkanoate (PHA) storage within a mixed-culture biomass with simultaneous growth as a function of accumulation substrate nitrogen and phosphorus levels.
    Valentino F; Karabegovic L; Majone M; Morgan-Sagastume F; Werker A
    Water Res; 2015 Jun; 77():49-63. PubMed ID: 25846983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growth and polyhydroxybutyrate production by Ralstonia eutropha in emulsified plant oil medium.
    Budde CF; Riedel SL; Hübner F; Risch S; Popović MK; Rha C; Sinskey AJ
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1611-9. PubMed ID: 21279345
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A feeding strategy for incorporation of canola derived medium-chain-length monomers into the PHA produced by wild-type Cupriavidus necator.
    Rathinasabapathy A; Ramsay BA; Ramsay JA; Pérez-Guevara F
    World J Microbiol Biotechnol; 2014 Apr; 30(4):1409-16. PubMed ID: 24287944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gas fermentation combined with water electrolysis for production of polyhydroxyalkanoate copolymer from carbon dioxide by engineered Ralstonia eutropha.
    Di Stadio G; Orita I; Nakamura R; Fukui T
    Bioresour Technol; 2024 Feb; 394():130266. PubMed ID: 38159815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Fatty acid composition of Wautersia eutropha lipids under conditions of active polyhydroxyalkanoates synthesis].
    Kalacheva GS; Volova TG
    Mikrobiologiia; 2007; 76(5):608-14. PubMed ID: 18069320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.