These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 23119052)
21. The Reproductive Capacities of the Calanoid Copepods Behbehani M; Uddin S; Habibi N; Al-Sarawi HA; Al-Enezi Y Animals (Basel); 2023 Jun; 13(13):. PubMed ID: 37443958 [TBL] [Abstract][Full Text] [Related]
22. Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations. Kurihara H; Ishimatsu A Mar Pollut Bull; 2008 Jun; 56(6):1086-90. PubMed ID: 18455195 [TBL] [Abstract][Full Text] [Related]
23. Phytoplankton food quality determines time windows for successful zooplankton reproductive pulses. Vargas CA; Escribano R; Poulet S Ecology; 2006 Dec; 87(12):2992-9. PubMed ID: 17249223 [TBL] [Abstract][Full Text] [Related]
24. Increased fitness of a key appendicularian zooplankton species under warmer, acidified seawater conditions. Bouquet JM; Troedsson C; Novac A; Reeve M; Lechtenbörger AK; Massart W; Skaar KS; Aasjord A; Dupont S; Thompson EM PLoS One; 2018; 13(1):e0190625. PubMed ID: 29298334 [TBL] [Abstract][Full Text] [Related]
25. Temperature is the evil twin: effects of increased temperature and ocean acidification on reproduction in a reef fish. Miller GM; Kroon FJ; Metcalfe S; Mundayi PL Ecol Appl; 2015 Apr; 25(3):603-20. PubMed ID: 26214908 [TBL] [Abstract][Full Text] [Related]
26. Vertical and geographic distribution of copepod communities at late summer in the Amerasian Basin, Arctic Ocean. Wang YG; Tseng LC; Lin M; Hwang JS PLoS One; 2019; 14(7):e0219319. PubMed ID: 31295285 [TBL] [Abstract][Full Text] [Related]
27. Upwelling modulation of functional traits of a dominant planktonic grazer during "warm-acid" El Niño 2015 in a year-round upwelling area of Humboldt Current. Aguilera VM; Escribano R; Vargas CA; González MT PLoS One; 2019; 14(1):e0209823. PubMed ID: 30640913 [TBL] [Abstract][Full Text] [Related]
28. Adaptive capacity of the habitat modifying sea urchin Centrostephanus rodgersii to ocean warming and ocean acidification: performance of early embryos. Foo SA; Dworjanyn SA; Poore AG; Byrne M PLoS One; 2012; 7(8):e42497. PubMed ID: 22880005 [TBL] [Abstract][Full Text] [Related]
29. Hydrostatic pressure and temperature effects on the membranes of a seasonally migrating marine copepod. Pond DW; Tarling GA; Mayor DJ PLoS One; 2014; 9(10):e111043. PubMed ID: 25338196 [TBL] [Abstract][Full Text] [Related]
30. Effects of ocean acidification on copepods. Wang M; Jeong CB; Lee YH; Lee JS Aquat Toxicol; 2018 Mar; 196():17-24. PubMed ID: 29324394 [TBL] [Abstract][Full Text] [Related]
31. Bet hedging in a warming ocean: predictability of maternal environment shapes offspring size variation in marine sticklebacks. Shama LN Glob Chang Biol; 2015 Dec; 21(12):4387-400. PubMed ID: 26183221 [TBL] [Abstract][Full Text] [Related]
32. Effect of temperature and salinity on egg hatching and description of the life cycle of Lernanthropus latis (Copepoda: Lernanthropidae) infecting barramundi, Lates calcarifer. Brazenor AK; Hutson KS Parasitol Int; 2013 Oct; 62(5):437-47. PubMed ID: 23707229 [TBL] [Abstract][Full Text] [Related]
33. In situ detrimental impacts of Prorocentrum donghaiense blooms on zooplankton in the East China Sea. Lin JN; Yan T; Zhang QC; Wang YF; Liu Q; Zhou MJ Mar Pollut Bull; 2014 Nov; 88(1-2):302-10. PubMed ID: 25242234 [TBL] [Abstract][Full Text] [Related]
34. Spiny but Subitaneous Eggs: Egg Morphology and Hatching in Nakajima R; Yoshida T; Sakaguchi SO; Othman BHR; Toda T Zool Stud; 2019; 58():e5. PubMed ID: 31966306 [TBL] [Abstract][Full Text] [Related]
35. [Thermal tolerance of some marine copepods]. Liao YB; Chen QZ; Zeng JN; Xu XQ; Shou L; Liu JJ; Jiang ZB; Zheng P Ying Yong Sheng Tai Xue Bao; 2008 Feb; 19(2):449-52. PubMed ID: 18464656 [TBL] [Abstract][Full Text] [Related]
36. Increased tolerance to oil exposure by the cosmopolitan marine copepod Acartia tonsa. Krause KE; Dinh KV; Nielsen TG Sci Total Environ; 2017 Dec; 607-608():87-94. PubMed ID: 28688259 [TBL] [Abstract][Full Text] [Related]
37. Effects of raised CO2 concentration on the egg production rate and early development of two marine copepods (Acartia steueri and Acartia erythraea). Kurihara H; Shimode S; Shirayama Y Mar Pollut Bull; 2004 Nov; 49(9-10):721-7. PubMed ID: 15530515 [TBL] [Abstract][Full Text] [Related]
38. Interactive Effects of Increasing Temperature and Decreasing Oxygen on Coastal Copepods. Roman MR; Pierson JJ Biol Bull; 2022 Oct; 243(2):171-183. PubMed ID: 36548979 [TBL] [Abstract][Full Text] [Related]
39. Extreme temperature impairs growth and productivity in a common tropical marine copepod. Doan NX; Vu MTT; Pham HQ; Wisz MS; Nielsen TG; Dinh KV Sci Rep; 2019 Mar; 9(1):4550. PubMed ID: 30872725 [TBL] [Abstract][Full Text] [Related]
40. Toxicity of nickel in the marine calanoid copepod Acartia tonsa: Nickel chloride versus nanoparticles. Zhou C; Vitiello V; Casals E; Puntes VF; Iamunno F; Pellegrini D; Changwen W; Benvenuto G; Buttino I Aquat Toxicol; 2016 Jan; 170():1-12. PubMed ID: 26562184 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]