BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 23121387)

  • 1. In vitro fermentation of grape seed flavan-3-ol fractions by human faecal microbiota: changes in microbial groups and phenolic metabolites.
    Cueva C; Sánchez-Patán F; Monagas M; Walton GE; Gibson GR; Martín-Álvarez PJ; Bartolomé B; Moreno-Arribas MV
    FEMS Microbiol Ecol; 2013 Mar; 83(3):792-805. PubMed ID: 23121387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of grape polyphenols on lactic acid bacteria and bifidobacteria growth: resistance and metabolism.
    Tabasco R; Sánchez-Patán F; Monagas M; Bartolomé B; Victoria Moreno-Arribas M; Peláez C; Requena T
    Food Microbiol; 2011 Oct; 28(7):1345-52. PubMed ID: 21839384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The absorption, metabolism and excretion of flavan-3-ols and procyanidins following the ingestion of a grape seed extract by rats.
    Tsang C; Auger C; Mullen W; Bornet A; Rouanet JM; Crozier A; Teissedre PL
    Br J Nutr; 2005 Aug; 94(2):170-81. PubMed ID: 16115350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility and application of liquid-liquid extraction combined with gas chromatography-mass spectrometry for the analysis of phenolic acids from grape polyphenols degraded by human faecal microbiota.
    Muñoz-González C; Moreno-Arribas MV; Rodríguez-Bencomo JJ; Cueva C; Martín Álvarez PJ; Bartolomé B; Pozo-Bayón MA
    Food Chem; 2012 Jul; 133(2):526-35. PubMed ID: 25683429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial metabolites, but not other phenolics derived from grape seed phenolic extract, are transported through differentiated Caco-2 cell monolayers.
    Wang D; Williams BA; Ferruzzi MG; D'Arcy BR
    Food Chem; 2013 Jun; 138(2-3):1564-73. PubMed ID: 23411282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro extraction and fermentation of polyphenols from grape seeds (Vitis vinifera) by human intestinal microbiota.
    Zhou L; Wang W; Huang J; Ding Y; Pan Z; Zhao Y; Zhang R; Hu B; Zeng X
    Food Funct; 2016 Apr; 7(4):1959-67. PubMed ID: 26980065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different concentrations of grape seed extract affect in vitro starch fermentation by porcine small and large intestinal inocula.
    Wang D; Williams BA; Ferruzzi MG; D'Arcy BR
    J Sci Food Agric; 2013 Jan; 93(2):276-83. PubMed ID: 22777827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites.
    Monagas M; Urpi-Sarda M; Sánchez-Patán F; Llorach R; Garrido I; Gómez-Cordovés C; Andres-Lacueva C; Bartolomé B
    Food Funct; 2010 Dec; 1(3):233-53. PubMed ID: 21776473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro fermentation of a red wine extract by human gut microbiota: changes in microbial groups and formation of phenolic metabolites.
    Sánchez-Patán F; Cueva C; Monagas M; Walton GE; Gibson GR; Quintanilla-López JE; Lebrón-Aguilar R; Martín-Álvarez PJ; Moreno-Arribas MV; Bartolomé B
    J Agric Food Chem; 2012 Mar; 60(9):2136-47. PubMed ID: 22313337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, analytical features, and biological relevance of 5-(3',4'-dihydroxyphenyl)-γ-valerolactone, a microbial metabolite derived from the catabolism of dietary flavan-3-ols.
    Sanchez-Patan F; Chioua M; Garrido I; Cueva C; Samadi A; Marco-Contelles J; Moreno-Arribas MV; Bartolome B; Monagas M
    J Agric Food Chem; 2011 Jul; 59(13):7083-91. PubMed ID: 21627328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vitro Faecal Fermentation of Monomeric and Oligomeric Flavan-3-ols: Catabolic Pathways and Stoichiometry.
    Di Pede G; Bresciani L; Brighenti F; Clifford MN; Crozier A; Del Rio D; Mena P
    Mol Nutr Food Res; 2022 Nov; 66(21):e2101090. PubMed ID: 35107868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenolic metabolites and substantial microbiome changes in pig feces by ingesting grape seed proanthocyanidins.
    Choy YY; Quifer-Rada P; Holstege DM; Frese SA; Calvert CC; Mills DA; Lamuela-Raventos RM; Waterhouse AL
    Food Funct; 2014 Sep; 5(9):2298-308. PubMed ID: 25066634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Black rhinoceros (Diceros bicornis) and domestic horse (Equus caballus) hindgut microflora demonstrate similar fermentation responses to grape seed extract supplementation in vitro.
    Huntley NF; Naumann HD; Kenny AL; Kerley MS
    J Anim Physiol Anim Nutr (Berl); 2017 Oct; 101(5):e195-e209. PubMed ID: 27859814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capability of Lactobacillus plantarum IFPL935 to catabolize flavan-3-ol compounds and complex phenolic extracts.
    Sánchez-Patán F; Tabasco R; Monagas M; Requena T; Peláez C; Moreno-Arribas MV; Bartolomé B
    J Agric Food Chem; 2012 Jul; 60(29):7142-51. PubMed ID: 22646528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted analysis of microbial-generated phenolic acid metabolites derived from grape flavanols by gas chromatography-triple quadrupole mass spectrometry.
    Carry E; Zhao D; Mogno I; Faith J; Ho L; Villani T; Patel H; Pasinetti GM; Simon JE; Wu Q
    J Pharm Biomed Anal; 2018 Sep; 159():374-383. PubMed ID: 30032004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Procyanidin dimers are metabolized by human microbiota with 2-(3,4-dihydroxyphenyl)acetic acid and 5-(3,4-dihydroxyphenyl)-gamma-valerolactone as the major metabolites.
    Appeldoorn MM; Vincken JP; Aura AM; Hollman PC; Gruppen H
    J Agric Food Chem; 2009 Feb; 57(3):1084-92. PubMed ID: 19191673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cocoa and Grape Seed Byproducts as a Source of Antioxidant and Anti-Inflammatory Proanthocyanidins.
    Cádiz-Gurrea ML; Borrás-Linares I; Lozano-Sánchez J; Joven J; Fernández-Arroyo S; Segura-Carretero A
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28208630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proanthocyanidin-Rich Grape Seed Extract Modulates Intestinal Microbiota in Ovariectomized Mice.
    Jin G; Asou Y; Ishiyama K; Okawa A; Kanno T; Niwano Y
    J Food Sci; 2018 Apr; 83(4):1149-1152. PubMed ID: 29578242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical investigation of commercial grape seed derived products to assess quality and detect adulteration.
    Villani TS; Reichert W; Ferruzzi MG; Pasinetti GM; Simon JE; Wu Q
    Food Chem; 2015 Mar; 170():271-80. PubMed ID: 25306345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidant activity and radioprotective effects against chromosomal damage induced in vivo by X-rays of flavan-3-ols (Procyanidins) from grape seeds (Vitis vinifera): comparative study versus other phenolic and organic compounds.
    Castillo J; Benavente-García O; Lorente J; Alcaraz M; Redondo A; Ortuño A; Del Rio JA
    J Agric Food Chem; 2000 May; 48(5):1738-45. PubMed ID: 10820088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.