BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23121559)

  • 1. Bisolute sorption and thermodynamic behavior of organic pollutants to biomass-derived biochars at two pyrolytic temperatures.
    Chen Z; Chen B; Zhou D; Chen W
    Environ Sci Technol; 2012 Nov; 46(22):12476-83. PubMed ID: 23121559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures.
    Chen B; Chen Z
    Chemosphere; 2009 Jun; 76(1):127-33. PubMed ID: 19282020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and slow rates of naphthalene sorption to biochars produced at different temperatures.
    Chen Z; Chen B; Chiou CT
    Environ Sci Technol; 2012 Oct; 46(20):11104-11. PubMed ID: 22970831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties.
    Han Y; Boateng AA; Qi PX; Lima IM; Chang J
    J Environ Manage; 2013 Mar; 118():196-204. PubMed ID: 23454371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures.
    Chen B; Zhou D; Zhu L
    Environ Sci Technol; 2008 Jul; 42(14):5137-43. PubMed ID: 18754360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene.
    Zhang H; Lin K; Wang H; Gan J
    Environ Pollut; 2010 Sep; 158(9):2821-5. PubMed ID: 20638165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solute systems.
    Lian F; Huang F; Chen W; Xing B; Zhu L
    Environ Pollut; 2011 Apr; 159(4):850-7. PubMed ID: 21277057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of humic acid and heavy metals on the sorption of polar and apolar organic pollutants onto biochars.
    Wang F; Sun H; Ren X; Liu Y; Zhu H; Zhang P; Ren C
    Environ Pollut; 2017 Dec; 231(Pt 1):229-236. PubMed ID: 28802992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physicochemical and sorption properties of thermally-treated sediments with high organic matter content.
    Pan B; Huang P; Wu M; Wang Z; Wang P; Jiao X; Xing B
    Bioresour Technol; 2012 Jan; 103(1):367-73. PubMed ID: 22033373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars.
    Ding W; Dong X; Ime IM; Gao B; Ma LQ
    Chemosphere; 2014 Jun; 105():68-74. PubMed ID: 24393563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate.
    Chen B; Chen Z; Lv S
    Bioresour Technol; 2011 Jan; 102(2):716-23. PubMed ID: 20863698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of different biomass components to the sorption of 1,2,4-trichlorobenzene under a series of pyrolytic temperatures.
    Han L; Qian L; Yan J; Chen M
    Chemosphere; 2016 Aug; 156():262-271. PubMed ID: 27179244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass.
    Wang S; Gao B; Zimmerman AR; Li Y; Ma L; Harris WG; Migliaccio KW
    Chemosphere; 2015 Sep; 134():257-62. PubMed ID: 25957037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars).
    Kasozi GN; Zimmerman AR; Nkedi-Kizza P; Gao B
    Environ Sci Technol; 2010 Aug; 44(16):6189-95. PubMed ID: 20669904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida).
    Kim KH; Kim JY; Cho TS; Choi JW
    Bioresour Technol; 2012 Aug; 118():158-62. PubMed ID: 22705519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures.
    Zhang G; Zhang Q; Sun K; Liu X; Zheng W; Zhao Y
    Environ Pollut; 2011 Oct; 159(10):2594-601. PubMed ID: 21719171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Qualitative analysis of volatile organic compounds on biochar.
    Spokas KA; Novak JM; Stewart CE; Cantrell KB; Uchimiya M; Dusaire MG; Ro KS
    Chemosphere; 2011 Oct; 85(5):869-82. PubMed ID: 21788060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of nitrogen-rich biomaterial-derived biochars and their sorption for aromatic compounds.
    Zhang M; Shu L; Shen X; Guo X; Tao S; Xing B; Wang X
    Environ Pollut; 2014 Dec; 195():84-90. PubMed ID: 25194275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of biochars from lignin, cellulose and wood as the sorbent to an aromatic pollutant.
    Li J; Li Y; Wu Y; Zheng M
    J Hazard Mater; 2014 Sep; 280():450-7. PubMed ID: 25194813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures.
    Wang Z; Han L; Sun K; Jin J; Ro KS; Libra JA; Liu X; Xing B
    Chemosphere; 2016 Feb; 144():285-91. PubMed ID: 26364218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.